Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-24T12:57:59.077Z Has data issue: false hasContentIssue false

The effect of size and composition on the strength and hardening of Cu–Ni/Nb nanoscale metallic composites

Published online by Cambridge University Press:  13 June 2017

Ioannis N. Mastorakos*
Affiliation:
Department of Mechanical and Aeronautical Engineering, Clarkson University, Potsdam, New York 13699, USA
Rachel L. Schoeppner
Affiliation:
Swiss Federal Laboratories for Materials Science and Technology (Empa), Thun CH-3602, Switzerland
Brian Kowalczyk
Affiliation:
Department of Mechanical and Aeronautical Engineering, Clarkson University, Potsdam, New York 13699, USA
David F. Bahr
Affiliation:
Department of Materials Engineering, Purdue University, West Lafayette, Indiana 47907, USA
*
a) Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Nanoscale metallic material composites consisting of bilayer and trilayer systems of two and three different metallic alternating layers show significant gains in hardness over monolithic single phase films. One of the main applications of these composites can be as protective coatings to technical components to increase their lifespan acting as a mechanical barrier to the carriers of permanent deformation. In this work, we study the strength of bilayer structures made of alternating layers of niobium (Nb) and copper–nickel (Cu–Ni) alloys. The effect of the layer size and composition on strength and hardening as well as the effect of the metal–alloy interface on the dislocation motion is investigated. The simulations reveal a close relationship between the atomic composition of the alloy and the hardening of the film. The results are also compared with experimental findings on nanopillars made of similar structures, and strong similarities are revealed and discussed.

Type
Invited Papers
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Contributing Editor: Gary L. Messing

References

REFERENCES

Misra, A. and Kung, H.: Deformation behavior of nanostructured metallic multilayers. Adv. Eng. Mater. 3(4), 217 (2001).Google Scholar
Hoagland, R., Mitchell, T., Hirth, J., and Kung, H.: On the strengthening effects of interfaces in multilayer fcc metallic composites. Philos. Mag. A 82(4), 643 (2002).Google Scholar
Bellou, A., Overman, C.T., Zbib, H.M., Bahr, D.F., and Misra, A.: Strength and strain hardening behavior of Cu-based bilayers and trilayers. Scr. Mater. 64(7), 641 (2011).Google Scholar
Wang, Y., Misra, A., and Hoagland, R.: Fatigue properties of nanoscale Cu/Nb multilayers. Scr. Mater. 54(9), 1593 (2006).Google Scholar
Misra, A., Demkowicz, M., Zhang, X., and Hoagland, R.: The radiation damage tolerance of ultra-high strength nanolayered composites. JOM 59(9), 62 (2007).CrossRefGoogle Scholar
McKeown, J., Misra, A., Kung, H., Hoagland, R.G., and Nastasi, M.: Microstructures and strength of nanoscale Cu–Ag multilayers. Scr. Mater. 46(8), 593 (2002).Google Scholar
Economy, D.R., Schultz, B.M., and Kennedy, M.S.: Impacts of accelerated aging on the mechanical properties of Cu–Nb nanolaminates. J. Mater. Sci. 47(19), 6986 (2012).Google Scholar
Misra, A., Verdier, M., Lu, Y.C., Kung, H., Mitchell, T.E., Nastasi, M., and Embury, D.J.: Structure and mechanical properties of Cu–X (X = Nb, Cr, Ni) nanolayered composites. Scr. Mater. 39(4/5), 555 (1998).CrossRefGoogle Scholar
Abdolrahim, N., Zbib, H.M., and Bahr, D.F.: Multiscale modeling and simulation of deformation in nanoscale metallic multilayer systems. Int. J. Plast. 52, 33 (2014).Google Scholar
Mastorakos, I.N. and Abdolrahim, N.: Deformation mechanisms in composite nano-layered metallic and nanowire structures. Int. J. Mech. Sci. 52, 295 (2010).CrossRefGoogle Scholar
Gale, J.D., Achuthan, A., and Morrison, D.J.: Indentation size effect (ISE) in copper subjected to severe plastic deformation (SPD). Metall. Mater. Trans. A 45(5), 2487 (2014).CrossRefGoogle Scholar
Mastorakos, I.N., Zbib, H.M., and Bahr, D.F.: Deformation mechanisms and strength in nanoscale multilayer metallic composites with coherent and incoherent interfaces. Appl. Phys. Lett. 94(17), 173114 (2009).CrossRefGoogle Scholar
Shao, S., Zbib, H.M., Mastorakos, I.N., and Bahr, D.F.: The void nucleation strengths of the Cu–Ni–Nb-based nanoscale metallic multilayers under high strain rate tensile loadings. Comput. Mater. Sci. 82, 435 (2014).Google Scholar
Mitlin, D., Misra, A., Radmilovic, V., Nastasi, M., Hoagland, R., Embury, D., Hirth, J., and Mitchell, T.: Formation of misfit dislocations in nanoscale Ni–Cu bilayer films. Philos. Mag. 84(7), 719 (2004).CrossRefGoogle Scholar
Mitlin, D., Misra, A., Mitchell, T., Hirth, J., and Hoagland, R.: Interface dislocation structures at the onset of coherency loss in nanoscale Ni–Cu bilayer films. Philos. Mag. 85(28), 3379 (2005).CrossRefGoogle Scholar
Misra, A., Hirth, J.P., and Hoagland, R.G.: Length-scale-dependent deformation mechanisms in incoherent metallic multilayered composites. Acta Mater. 53(18), 4817 (2005).CrossRefGoogle Scholar
Akasheh, F., Zbib, H., Hirth, J., Hoagland, R., and Misra, A.: Dislocation dynamics analysis of dislocation intersections in nanoscale metallic multilayered composites. J. Appl. Phys. 101(8), 84314 (2007).Google Scholar
Misra, A., Demkowicz, M., Wang, J., and Hoagland, R.: The multiscale modeling of plastic deformation in metallic nanolayered composites. JOM 60(4), 39 (2008).Google Scholar
Mastorakos, I.N., Bellou, A., Bahr, D.F., and Zbib, H.M.: Size-dependent strength in nanolaminate metallic systems. J. Mater. Res. 26(10), 1179 (2011).Google Scholar
Barshilia, H.C. and Rajam, K.S.: Characterization of Cu/Ni multilayer coatings by nanoindentation and atomic force microscopy. Surf. Coat. Technol. 155(2–3), 195 (2002).Google Scholar
Wang, J. and Misra, A.: An overview of interface-dominated deformation mechanisms in metallic multilayers. Curr. Opin. Solid State Mater. Sci. 15(1), 20 (2011).Google Scholar
Zhang, J.Y., Zhang, X., Liu, G., Zhang, G.J., and Sun, J.: Scaling of the ductility with yield strength in nanostructured Cu/Cr multilayer films. Scr. Mater. 63(1), 101 (2010).Google Scholar
Zbib, H.M., Overman, C.T., Akasheh, F., and Bahr, D.: Analysis of plastic deformation in nanoscale metallic multilayers with coherent and incoherent interfaces. Int. J. Plast. 27(10), 1618 (2011).CrossRefGoogle Scholar
Shao, S., Zbib, H.M., Mastorakos, I.N., and Bahr, D.F.: Deformation mechanisms, size effects, and strain hardening in nanoscale metallic multilayers under nanoindentation. J. Appl. Phys. 112(4), 44307 (2012).Google Scholar
Petch, N.J.: The cleavage strength of polycrystals. J. Iron Steel Inst., London 174, 25 (1953).Google Scholar
Schoeppner, R.L., Wheeler, J.M., Zechner, J., Michler, J., Zbib, H.M., and Bahr, D.F.: Coherent interfaces increase strain-hardening behavior in tri-component nano-scale metallic multilayer thin films. Mater. Res. Lett. 3(2), 114 (2015).CrossRefGoogle Scholar
Verdier, M., Huang, H., Spaepen, F., Embury, J.D., and Kung, H.: Microstructure, indentation and work hardening of Cu/Ag multilayers. Philos. Mag. 86(32), 5009 (2006).Google Scholar
Huang, H. and Spaepen, F.: Tensile testing of free-standing Cu, Ag and Al thin films and Ag/Cu multilayers. Acta Mater. 48(12), 3261 (2000).Google Scholar
Wang, J., Zhou, Q., Shao, S., and Misra, A.: Strength and plasticity of nanolaminated materials. Mater. Res. Lett. 5(1), 1 (2017).CrossRefGoogle Scholar
Mara, N., Bhattacharyya, D., Dickerson, P., Hoagland, R., and Misra, A.: Deformability of ultrahigh strength 5 nm Cu/Nb nanolayered composites. Appl. Phys. Lett. 92(23), 231901 (2008).CrossRefGoogle Scholar
Rabe, R., Breguet, J-M., Schwaller, P., Stauss, S., Haug, F-J., Patscheider, J., and Michler, J.: Observation of fracture and plastic deformation during indentation and scratching inside the scanning electron microscope. Thin Solid Films 469–470, 206 (2004).CrossRefGoogle Scholar
Wheeler, J.M. and Michler, J.: Elevated temperature, nano-mechanical testing in situ in the scanning electron microscope. Rev. Sci. Instrum. 84(4), 45103 (2013).Google Scholar
Plimpton, S.J.: Fast parallel algorithms for short-range molecular dynamics. J. Comp. Physiol. 117, 1 (1995).Google Scholar
Daw, M. and Baskes, M.: Embedded-atom method: Derivation and application to impurities, surfaces, and other defects in metals. Phys. Rev. B 29, 6443 (1983).Google Scholar
Voter, A.F.: Intermetallic Compounds. Principles and Practice (Wiley, Chichester, 1995).Google Scholar
Hoagland, R.G., Hirth, J.P., and Misra, A.: On the role of weak interfaces in blocking slip in nanoscale layered composites. Philos. Mag. 86(23), 3537 (2006).Google Scholar
Zhang, Q., Lai, W.S., and Liu, B.X.: Atomic structure and physical properties of Ni–Nb amorphous alloys determined by an n-body potential. J. Non-Cryst. Solids 261(1–3), 137 (2000).CrossRefGoogle Scholar
Melchionna, S., Ciccotti, G., and Lee Holian, B.: Hoover NPT dynamics for systems varying in shape and size. Mol. Phys. 78(3), 533 (1993).Google Scholar
Hoagland, R., Kurtz, R., and Henager, C.: Slip resistance of interfaces and the strength of metallic multilayer composites. Scr. Mater. 50(6), 775 (2004).Google Scholar
Sneddon, I.N.: The relation between load and penetration in the axisymmetric boussinesq problem for a punch of arbitrary profile. Int. J. Eng. Sci. 3, 47 (1965).CrossRefGoogle Scholar
Hertzberg, R.W., Vinci, R.P., and Hertzberg, J.L.: Deformation and Fracture Mechanics of Engineering Materials, 5th ed. (John Wiley & Sons, Inc, Hoboken, NJ, 2012).Google Scholar
Stukowski, A., Bulatov, V.V., and Arsenlis, A.: Automated identification and indexing of dislocations in crystal interfaces. Modell. Simul. Mater. Sci. Eng. 20(8), 85007 (2012).Google Scholar