Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-03T02:55:24.276Z Has data issue: false hasContentIssue false

Effect of processing on the optical scattering of AlF3-based glasses

Published online by Cambridge University Press:  29 June 2016

T. Iqbal
Affiliation:
Fiber Optic Materials Research Program, Rutgers University, Piscataway, New Jersey 08855-0909
M.R. Shahriari
Affiliation:
Fiber Optic Materials Research Program, Rutgers University, Piscataway, New Jersey 08855-0909
G.H. Sigel Jr.
Affiliation:
Fiber Optic Materials Research Program, Rutgers University, Piscataway, New Jersey 08855-0909
A.E. Neeves
Affiliation:
AT&T Bell Laboratories, Murray Hill, New Jersey 07974
W. A. Reed
Affiliation:
AT&T Bell Laboratories, Murray Hill, New Jersey 07974
Get access

Abstract

The effect of starting materials purity, crucible material, and melting conditions on the optical scattering of AlF3-based glasses has been investigated. Platinum and vitreous carbon crucibles have been used to melt the glasses under nitrogen and reactive atmosphere (RAP) conditions. The optical quality of the bulk glass was evaluated by molecular light scattering in the Mie and Rayleigh regimes as a function of scattering angle and polarization at 0.647 μm. From an analysis of the angular scattering of both vertically and horizontally polarized beams, the sizes of the scattering sites have been estimated to be in the range of 0.02 to 2.0 μm. Glasses made with EM (BDH Limited) materials and melted in platinum crucibles without any reactive atmosphere exhibit lower values of scattering losses than those melted in the vitreous carbon crucibles under RAP.

Type
Articles
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Poignant, H., Electron. Lett. 18, 808 (1981).Google Scholar
2.Drexhage, M.G., Moynihan, C.T., and Saleh-Boulos, M., Laser Focus 16, 62 (1980).Google Scholar
3.Shibata, S., Horiguchi, M., Jinguji, K., Mitachi, S., Kanamori, T., and Manabe, T., Electron. Lett. 17, 775 (1981).CrossRefGoogle Scholar
4.Tran, D.C., Fisher, C.F., and Sigel, G.H. Jr., Electron. Lett. 18, 657 (1982).CrossRefGoogle Scholar
5.Drehman, J.A., Mater. Sci. For. 19–20, 483 (1987).Google Scholar
6.Tran, D.C., Sigel, G.H. Jr., and Bendow, B., J. Lightwave Technol. LT-2, 566 (1984).CrossRefGoogle Scholar
7.Poulain, M., Chanthanasinh, M., and Lucas, J., Mater. Res. Bull. XII, 151 (1977).CrossRefGoogle Scholar
8.Shibata, T., Takahashi, H., Kimura, M., Ijichi, T., Takahashi, K., Sasaki, Y., and Yoshida, S., Mater. Sci. For. 5, 379 (1985).Google Scholar
9.Tran, D.C., Burk, M.J., Levin, K.H., Fisher, C.F., Hart, P., Busse, L., Lu, G., and Sigel, G.H. Jr., Mater. Sci. For. 5, 339 (1985).Google Scholar
10.Kanamori, T., Oikawa, K., Shibata, S., and Manabe, T., Jpn. J. Appl. Phys. 20, 326 (1981).CrossRefGoogle Scholar
11.Izumitani, T., Yamashita, T., Tokida, M., Miura, K., and Tajima, H., Mater. Sci. For. 19–20, 19 (1987).Google Scholar
12.Lines, M.E., J. Non-Cryst. Solids 103, 265 (1988).CrossRefGoogle Scholar
13.Pangonis, W.M.J. and Heller, Wilfried, Angular Scattering Functions for Spherical Particles (Wayne State University Press, Detroit, MI, 1960).Google Scholar
14.Kerker, Milton, The Scattering of Light and Other Electromagnetic Radiation (Academic Press, New York, 1969).Google Scholar
15.Neeves, A.E., Reed, W.A., Chui-Sabourin, M., and Bruce, A.J., in Optical Fiber Materials and Processing, edited by Fleming, J.W., Sigel, G.H. Jr., Takahashi, S., and France, P. W. (Mater. Res. Soc. Symp. Proc. 172, Pittsburgh, PA, 1990), p. 149.Google Scholar
16.Neeves, A.E. and Reed, W.A., submitted to J. Appl. Opt. (1990).Google Scholar