Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-26T05:24:12.419Z Has data issue: false hasContentIssue false

The effect of porosity development on the removal of organic vehicle from ceramic or metal moldings

Published online by Cambridge University Press:  31 January 2011

S.A. Matar
Affiliation:
Department of Mathematics and Statistics, Brunel University, Uxbridge, Middlesex UB8 3PH, United Kingdom
M.J. Edirisinghe
Affiliation:
Department of Materials Technology, Brunel University, Uxbridge, Middlesex UB8 3PH, United Kingdom
J.R.G. Evans
Affiliation:
Department of Materials Technology, Brunel University, Uxbridge, Middlesex UB8 3PH, United Kingdom
E.H. Twizell
Affiliation:
Department of Mathematics and Statistics, Brunel University, Uxbridge, Middlesex UB8 3PH, United Kingdom
Get access

Abstract

An experimentally verified model, which quantifies the degradation and diffusion of organic vehicle during pyrolysis of a ceramic molding in the shape of an infinite cylinder, has been modified to accommodate the various effects of porosity development as degradation proceeds. Thus, in the first case, a shrinking radius has been taken into account as organic matter recedes. Secondly, the formation of uniformly distributed porosity is considered as organic vehicle is removed. In each of these instances, the model predicts the critical heating rate and temperature at which boiling occurs in the ceramic body, giving rise to internal defects for various cylinder radii.

Type
Articles
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Edirisinghe, M. J. and Evans, J. R. G.Int. J. High Technol. Ceram. 2, 1 (1986).Google Scholar
2Idem, ibid. 2, 249 (1986).Google Scholar
3German, R.M.Hens, K.F. and Lin, S.T. Paul, Bull. Am. Ceram. Soc. 70, 1294 (1991).Google Scholar
4Evans, J. R. G. in New Materials and Their Applications, edited by Holland, D. (Institute of Physics, U. K., 1990), pp. 2532.Google Scholar
5Zhang, J. G.Edirisinghe, M. J. and Evans, J. R. G.Industrial Ceram. 9, 72 (1989).Google Scholar
6Woodthorpe, J.Edirisinghe, M.J. and Evans, J. R. G.J. Mater. Sci. 24, 1038 (1989).CrossRefGoogle Scholar
7Wright, J. K.Evans, J. R. G., and Edirisinghe, M. J.J. Am. Ceram. Soc. 72, 1822 (1989).CrossRefGoogle Scholar
8German, R. M.Int. J. Powder Metall. 23, 237 (1987).Google Scholar
9Calvert, P. and Cima, M.J. Am. Ceram. Soc. 73, 575 (1990).CrossRefGoogle Scholar
10Baron, M. R. and Ulicny, J. C.ibid. 73, 3323 (1990).Google Scholar
11Stangle, G.C. and Aksay, I. A.Chem. Eng. Sci. 45, 1719 (1990).CrossRefGoogle Scholar
12Evans, J. R. G.Edirisinghe, M. J.Wright, J. K. and Crank, J.Proc. Soc. London A432, 321 (1991).Google Scholar
13Zhang, T.Evans, J. R. G. and Dutta, K. K.J. Euro. Ceram. Soc. 5, 303 (1989).Google Scholar
14Shaw, H.Hutton, T. J. and Edirisinghe, M. J.J. Mater. Sci. Lett. 11, 1075 (1992).CrossRefGoogle Scholar
15Crank, J. and Nicolson, P.Proc. Cambridge Philos. Soc. Math. Phys. Sci. 43, 50 (1947).CrossRefGoogle Scholar
16Duda, J. L.Vrentas, J. S.Ju, S. T. and Liu, H. T.AICh EJ 28, 279 (1982).Google Scholar
17Ferry, J. D.Viscoelastic Properties of Polymers (John Wiley, New York, 1970), p. 316.Google Scholar
18Flory, P. J.Principles ofPolymer Chemistry (Cornell Univ. Press Ithica, NY, 1953), pp. 495540.Google Scholar
19Barrer, R. M. in Diffusion in Polymers, edited by Crank, J. and Park, G. S. (Academic Press, London, 1968), pp. 165217.Google Scholar
20Mikhailov, M.D.Ozisik, M.N. and Shishedjiev, B.K.J. Heat Transfer 104, 781 (1987).Google Scholar
21Kerner, E.H.Proc. Phys. Soc. B69, 802 (1956).Google Scholar
22Brailsford, A.D. and Major, K.G.Brit. J. Appl. Phys. 15, 313 (1964).CrossRefGoogle Scholar
23Cima, M.J.Lewis, J.A. and Devoe, A.D.J. Am. Ceram. Soc. 72, 1192 (1989).Google Scholar
24Twizell, E.H.Computational Methods for Partial Differential Equations (Ellis Horwood, Chichester, U.K., and John Wiley & Sons, New York, 1984).Google Scholar
25Duda, J. L. Pennsylvania State Univ., private communications.Google Scholar
26Duda, J. L.Ni, Y. C. and Vrentas, J. S.J. Appl. Polym. Sci. 22, 689 (1978).CrossRefGoogle Scholar
27Endo, H.Fujimoto, T. and Nagasawa, M. J.Polym. Sci. 7, 1669 (1969).Google Scholar
28Coulter, K. E. and Kehde, H.Encyclopedia ofPolymer Science and Technology, edited by Mark, H. F. and Gaylord, N. G. (Interscience, New York, 1970), p. 152.Google Scholar
29Canagaratne, S. G.Margerison, D. and Newport, J. P.Trans. Faraday Soc. 62, 3058 (1966).Google Scholar
30Bruggeman, D.A.G.Annln. Phys. 24, 636 (1935).Google Scholar
31Wiech, R.E.U.S. Patent 4305 756 (1981).Google Scholar
32Carslaw, H. S. and Jaeger, J. C.Conduction of Heat in Solids (Clarendon Press, Oxford, 1959), p. 200.Google Scholar
33Wright, J. K.Edirisinghe, M. J.Zhang, J. G. and Evans, J. R. G.J. Am. Ceram. Soc. 73, 2653 (1990).CrossRefGoogle Scholar
34Shaw, H. and Edirisinghe, M.J. Proc. 2nd European Ceram. Soc. Conf., Augsburg, Germany, September 1991 (in press).Google Scholar