Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-22T21:26:25.492Z Has data issue: false hasContentIssue false

Effect of oxygen partial pressure and melting temperature on Ag sheathed Bi-2212 wires

Published online by Cambridge University Press:  03 March 2011

T. Kanai
Affiliation:
Hitachi Research Laboratory, Hitachi Ltd., 1-1, Omika-cho, 7-chome, Hitachi-shi, Ibaraki-ken 319-12, Japan
N. Inoue
Affiliation:
Hitachi Research Laboratory, Hitachi Ltd., 1-1, Omika-cho, 7-chome, Hitachi-shi, Ibaraki-ken 319-12, Japan
T. Kamo
Affiliation:
Hitachi Research Laboratory, Hitachi Ltd., 1-1, Omika-cho, 7-chome, Hitachi-shi, Ibaraki-ken 319-12, Japan
Get access

Abstract

A serious problem for Ag-sheathed Bi-2212 wires produced by a partial melt process is oxygen release which causes effluence of the oxide materials from the Ag sheath. Higher oxygen partial pressure during the melt process cuts the oxygen release. We investigated the effect of the oxygen partial pressure, melting temperature, and cooling rate on superconducting properties of Ag-sheathed wires. It was found that (i) the formation of the Bi-2212 phase under a higher oxygen partial pressure of 1 atm is slower than that with a lower oxygen partial pressure of 0.2 or 0.5 atm; therefore, the cooling rate should be as slow as 0.25 °C/min to get homogeneity of the intragrain superconductivity as well as formation of the Bi-2212 phase, and (ii) melting temperature should be just above the incipient melting point; otherwise, Jc significantly decreases due to the formation and growth of voids together with degradation of superconductivity.

Type
Articles
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Kase, J., Togano, K., Kumakura, H., Dietderich, D. R., Irisawa, N., Morimoto, T., and Maeda, H., Jpn. J. Appl. Phys. 29, L1096 (1990).CrossRefGoogle Scholar
2Shimoyama, J., Kase, J., Morimoto, T., Kitaguchi, H., Kumakura, H., Togano, K., and Maeda, H., Jpn. J. Appl. Phys. 31, L1167 (1992).CrossRefGoogle Scholar
3Shimoyama, J., Tomita, N., Morimoto, T., Kitaguchi, H., Kumakura, H., Togano, K., Maeda, H., Nomura, K., and Seido, M., Jpn. J. Appl. Phys. 31, L1328 (1992).CrossRefGoogle Scholar
4Krauth, H., Heine, K., and Tenbrink, J., in High-Temperature Superconductors, Proc. ICMC'90, Garmisch-Partenkirchen, Federal Republic of Germany, May, 1990 (informationsgesellschaft mbH, Oberursel, 1991), p. 29.Google Scholar
5Asano, T., Tanaka, Y., Fukutomi, M., and Maeda, H., Jpn. J. Appl. Phys. 29, L1066 (1990).CrossRefGoogle Scholar
6Kanai, T. and Kamo, T., Supercond. Sci. Technol. 6, 510 (1993).CrossRefGoogle Scholar
7Lee, C-L., Chen, J-J., Wen, W-J., Perng, T-P., Wu, J-M., Wu, T-B., Chin, T-S., Liu, R-S., and Wu, P-T., J. Mater. Res. 5, 1403 (1990).CrossRefGoogle Scholar
8Majewski, P., Freilinger, B., Hettich, B., Popp, T., and Schize, K., Proceedings IMMC'90, 393 (1990).Google Scholar