Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-26T10:18:43.192Z Has data issue: false hasContentIssue false

Effect of oxygen on the thermomechanical behavior of passivated Cu thin films

Published online by Cambridge University Press:  31 January 2011

Jonathan B. Shu
Affiliation:
Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853–1501
Susan B. Clyburn
Affiliation:
Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853–1501
Thomas E. Mates
Affiliation:
Materials Department, University of California at Santa Barbara, California 93106
Shefford P. Baker
Affiliation:
Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853–1501
Get access

Abstract

The thermomechanical behavior of Cu thin films, 600–1125 nm thick and encapsulated between SiNx barrier and SiNx or AlNx passivation layers on silicon substrates, was studied during thermal cycling between room temperature and 400 or 500 °C using the substrate curvature method. Films were prepared with varying oxygen contents, and the distribution of oxygen through the thickness of selected films was studied before and after thermal cycling using secondary ion mass spectrometry. Large variations in the thermomechanical behavior with oxygen content were found and correlated with segregation of oxygen to the film/barrier and film/passivation interfaces. These variations are thought to be due to recovery of stored misfit dislocation energy, which is, in turn, controlled by oxygen in the film. Effects of oxygen on film deformation through variations in interfacial adhesion and diffusion-induced dislocation glide are considered.

Type
Articles
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Nix, W.D., Metall. Trans. A 20A, 2217 (1989).CrossRefGoogle Scholar
2.Flinn, P.A., Gardner, D.S., and Nix, W.D., IEEE Trans. Electron Devices ED-34(3), 689 (1987).CrossRefGoogle Scholar
3.Clemens, B.M. and Bain, J.A., MRS Bull. XVII (7), 46 (1992).CrossRefGoogle Scholar
4.Flinn, P.A., J. Mater. Res. 6, 1498 (1991).CrossRefGoogle Scholar
5.Thouless, M.D., Gupta, J., and Harper, J.M.E., J. Mater. Res. 8, 1845 (1993).CrossRefGoogle Scholar
6.Vinci, R.P., Zielinski, E.M., and Bravman, J.C., Thin Solid Films 262, 142 (1995).CrossRefGoogle Scholar
7.Baker, S.P., Keller, R-M., Kretschmann, A., and Arzt, E., in Materials Reliability in Microelectronics VIII, edited by Marieb, T., Bravman, J., Korhonen, M.A., and Lloyd, J.R. (Mater. Res. Soc. Symp. Proc., Warrendale, PA, 1998), p. 287.Google Scholar
8.Keller, R-M., Baker, S.P., and Arzt, E., J. Mater. Res. 13, 1307 (1998).CrossRefGoogle Scholar
9.Shen, Y-L., Suresh, S., He, M.Y., Bagchi, A., Kienzle, O., Ruhle, M. and Evans, A.G., J. Mater. Res. 13, 1928 (1998).CrossRefGoogle Scholar
10.Baker, S.P., Kretschmann, A., and Arzt, E., Acta Mater. 49, 2145 (2001).CrossRefGoogle Scholar
11.Weiss, D., Gao, H., and Arzt, E., Acta Mater. 49, 2395 (2001).CrossRefGoogle Scholar
12.Vinci, R.P., Forrest, S.A., and Bravman, J.C., J. Mater. Res. 17, 1863 (2002).CrossRefGoogle Scholar
13.Baker, S.P., Keller-Flaig, R-M., and Shu, J.B., Acta Mater. 51, 3019 (2003).CrossRefGoogle Scholar
14.Baker, S.P., Keller, R-M., and Arzt, E., in the Thin Films: Stresses and Mechanical Properties VII, edited by Cammarata, R.C., Busso, E.P., Nastasi, M., and Oliver, W.C. (Mater. Res. Soc. Symp. Proc., Warrendale PA, 1998), p. 605.Google Scholar
15.Volkert, C.A., Alofs, C.F., and J. Liefting, R., J. Mater. Res. 9, 1147 (1994).CrossRefGoogle Scholar
16.Frank, F.C. and Merwe, J.H. van der, Proc. R. Soc. A 198, 216 (1949).Google Scholar
17.Matthews, J.W. and Blakeslee, A.E., J. Cryst. Growth 27, 118 (1974).Google Scholar
18.Nix, W.D., Scripta Mater. 39, 545 (1998).CrossRefGoogle Scholar
19.Freund, L.B., J. Appl. Mech 54, 553 (1987).CrossRefGoogle Scholar
20.Saha, K., Shu, J.B., and Baker, S.P. (unpublished, 2003).Google Scholar
21.Shewmon, P.G., Meyrick, G., Mishra, S., and Parthasarathy, T.A., Scripta Metall. 17, 1231 (1983).CrossRefGoogle Scholar
22.Kirchheim, R., Acta Metall. 27, 869 (1979).CrossRefGoogle Scholar
23.Shu, J.B., Ph. D. Dissertation, Cornell University, Ithaca, NY (2003).Google Scholar
24.Purdes, A.J., Bolker, B.F.T., Bucci, J.D., and Tisone, T.C., J. Vac. Sci. Technol. 14, 98 (1977).CrossRefGoogle Scholar
25.Popov, D.N. and Docheva, P.I., Vacuum 42, 53 (1991).CrossRefGoogle Scholar
26.Parretta, A., Jayaraj, M.K., Di, A. Nocera, Loreti, S., Quercia, L., and Agati, A., Phys. Status Solidi A 155, 399 (1996).CrossRefGoogle Scholar
27.Benndorf, C., Egert, B., Keller, G., Seidel, H., and Thieme, F., J. Vac. Sci. Technol. 15, 1806 (1978).CrossRefGoogle Scholar
28.Backhaus-Ricoult, M., Philos. Mag. A 81, 1759 (2001).CrossRefGoogle Scholar
29.Backhaus-Ricoult, M., Samet, L., Thomas, M., Trichet, M.-F., and Imhoff, D., Acta Mater. 50, 4191 (2002).CrossRefGoogle Scholar
30.Baker, S.P., Joo, Y-C., Knauss, M.P., and Arzt, E., Acta Mater. 48, 2199 (2000).CrossRefGoogle Scholar
31.Kasthurirangan, J., Du, T., Ho, P., Capasso, C., Gall, M., Jawarani, D., Hernandez, R., and Kawasaki, H., in the Proceedings of the Fifth International Workshop on Stress Induced Phenomena in Metallization, edited by Kraft, O., Arzt, E., Volkert, C.A., Ho, P.S., and Okabayashi, H. (American Institute of Physics, Melville, NY, 1999), p. 304.Google Scholar