Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-22T18:09:50.788Z Has data issue: false hasContentIssue false

Effect of ordered structure and domain boundary on low-loss Ba[Mg1/3(Nbx/4Ta(4−x)/4)2/3]O3 microwave dielectric ceramics

Published online by Cambridge University Press:  03 March 2011

Chen-Fu Lin
Affiliation:
Department of Materials Science and Engineering, National Cheng-Kung University, Tainan 701, Taiwan, Republic of China
Horng-Hwa Lu
Affiliation:
Department of Mechanical Engineering, National Chin-Yi Institute of Technology, Taichung 411, Taiwan, Republic of China
Tien-I Chang
Affiliation:
Department of Materials Science and Engineering, National Cheng-Kung University, Tainan 701, Taiwan, Republic of China
Jow-Lay Huang*
Affiliation:
Department of Materials Science and Engineering, National Cheng-Kung University, Tainan 701, Taiwan, Republic of China
*
a) Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

The microstructure of Ba[Mg1/3(NbxTa(4−x)/4)2/3]O3 ceramics (x = 1, 2, 3, and 4) was investigated. Ordered structure and domain boundary were observed by high-resolution transmission electron microscopy. The disordered structure of 0.41 nm lattice modulation and the 1:2 ordering structure of 0.71 nm lattice modulation in the [111] direction are both formed in Ba[Mg1/3(NbxTa(4−x)/4)2/3]O3 ceramics. Except for the incoherent interface between disordered and 1:2 ordering domain, the coherent interface between two 1:2 ordering domains can also be observed in the Ba[Mg1/3(NbxTa(4−x)/4)2/3]O3 ceramics. In the Ba[Mg1/3(Nb1/4Ta3/4)2/3]O3 ceramic, the formation of an extra ordering structure (lattice modulation of 1.24 nm in the [111] direction) on the antiphase domain boundary with proper Nb substitution contributes to lower dielectric loss due to the stabilization of the domain boundary.

Type
Articles
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Vanderah, T.A.: Talking ceramics. Science 298, 1182 (2002).CrossRefGoogle ScholarPubMed
2.Kawashima, S., Nishida, M., Ueda, I., Ouchi, H.: Ba(Zn1/3Ta2/3)O3 ceramics with low-dielectric loss at microwave frequencies. J. Am. Ceram. Soc. 66, 421 (1983).CrossRefGoogle Scholar
3.Matsumoto, K., Hiuga, T., Takada, K., Ichimura, H. Ba(Mg1/3Ta2/3)O3 ceramics with ultra-low loss at microwave frequencies, in Proceedings of the 6th IEEE International Symposium on Application of Ferroelectrics (Institute of Electrical and Electronic Engineers, New York, 1986), pp. 118121.Google Scholar
4.Shimada, T.: Dielectric loss and damping constants of lattice vibrations in Ba(Mg1/3Ta2/3)O3 ceramics. J. Eur. Ceram. Soc. 23, 2647 (2003).CrossRefGoogle Scholar
5.Kim, I-T., Oh, T-S., Kim, Y-H.: Lattice distortion of Ba(Zn1/3Ta2/3)O3 with ordering of B-site cations. J. Mater. Sci. Lett. 12, 182 (1993).CrossRefGoogle Scholar
6.Jacobson, A.J., Collins, B.M., Fender, B.E.F.: A powder neutron and x-ray diffraction determination of the structure of Ba3Ta2ZnO9: An investigation of perovskite phases in the system Ba–Ta–Zn–O and the preparation of Ba2TaCdO5.5 and Ba2CeInO5.5. Acta Crystallogr. B32, 1083 (1976).CrossRefGoogle Scholar
7.Tamura, H., Konoike, T., Sakabe, Y., Wakino, K.: Improved high Q dielectric resonator with complex perovskite structure. J. Am. Ceram. Soc. 67, C-59 (1984).CrossRefGoogle Scholar
8.Lin, C-F., Lu, H-H., Chang, T-I., Huang, J-L.: Microstructural characteristics and microwave dielectric properties of Ba[Mg1/3(Nbx /4Ta(4−x )/4)2/3]O3 ceramics. J. Alloys Compd. 407, 318 (2006).CrossRefGoogle Scholar
9.Kolodiazhnyi, T.V., Petric, A., Johari, G.P., Belous, A.G.: Effect of preparation conditions on cation ordering and dielectric properties of Ba(Mg1/3Ta2/3)O3 ceramics. J. Eur. Ceram. Soc. 22, 2012 (2002).CrossRefGoogle Scholar
10.Kim, Y-W., Park, J-H., Park, J-G.: Local cationic ordering behavior in Ba(Mg1/3Nb2/3)O3 ceramics. J. Eur. Ceram. Soc. 24, 17757 (2004).CrossRefGoogle Scholar
11.Peter, K., Davies, J.T., Taki, N.: Effect of ordering-induced domain boundaries on low-loss Ba(Zn1/3Ta2/3)O3–BaZrO3 perovskite microwave dielectrics. J. Am. Ceram. Soc. 80, 1727 (1997).Google Scholar
12.Mehmet, A., Akbas, X., Davies, P.K.: Ordering-induced microstructures and microwave dielectric properties of the Ba(Mg1/3Nb2/3)O3–BaZrO3 system. J. Am. Ceram. Soc. 81, 670 (1998).Google Scholar
13.Lee, H.J., Park, H.M., Cho, Y.K., Ryu, H., Paik, J.H., Nahm, S., Byun, J-D.: Dielectric and structural characteristics in barium lanthanum magnesium niobate. J. Am. Ceram. Soc. 83, 937 (2000).CrossRefGoogle Scholar
14.Lee, H.J., Park, H.M., Cho, Y.K., Ryu, H., Paik, J.H., Nahm, S., Byun, J-D.: Microstructural changes in lanthanum-doped barium magnesium niobate. J. Am. Ceram. Soc. 82, 2529 (1999).CrossRefGoogle Scholar
15.Sun, J., Liu, S., Newman, N., Smith, D.J.: Ordered domains and boundary structure in Ba(Cd1/3Ta2/3)O3 perovskite dielectrics. Appl. Phys. Lett. 84, 3918 (2004).CrossRefGoogle Scholar
16.Sun, J., Liu, S., Newman, N., McCartney, M.R., Smith, D.J.: Electron microscopy characterization of Ba(Cd1/3Ta2/3)O3 microwave dielectrics with boron additive. J. Mater. Res. 19, 1387 (2004).CrossRefGoogle Scholar
17.Liu, S., Sun, J., Taylor, R., Smith, D.J., Newman, N.: Microstructure and dielectric properties of Ba(Cd1/3Ta2/3)O3 microwave ceramics synthesized with a boron oxide sintering aid. J. Mater. Res. 19, 3526 (2004).CrossRefGoogle Scholar
18.Wersing, W. High frequency ceramic dielectrics and their application for microwave components, in Electronic Ceramic, edited by Steele, B.C.H. (Elsevier Applied Science, London, UK, 1991), p. 67.Google Scholar