Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-23T16:37:47.276Z Has data issue: false hasContentIssue false

Effect of Nano-Sized Sm2BaCuO5 Particles Addition on the Pinning Mechanism of Sm–Ba–Cu–O Materials

Published online by Cambridge University Press:  03 March 2011

Shih-Yun Chen
Affiliation:
Department of Materials Science and Engineering, National Cheng-Kung University, 701 Tainan, Taiwan, Republic of China
Ping-Chi Hseih
Affiliation:
Department of Materials Science and Engineering, National Cheng-Kung University, 701 Tainan, Taiwan, Republic of China
In-Gann Chen*
Affiliation:
Department of Materials Science and Engineering, National Cheng-Kung University, 701 Tainan, Taiwan, Republic of China
Mow-Kuen Wu
Affiliation:
Institute of Physics, Academia Sinica, 115 Taipei, Taiwan, Republic of China
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

The superconducting properties of air-processed melt-textured growth Sm–Ba–Cu–O samples with addition of small amounts (0.004 wt%, 0.4 wt%, 4 wt%) of nano-sized Sm2BaCuO5 particles (nm211) were studied. The microstructure observations show that the size distribution and morphology of the 211-particles of the nm211-doped samples are similar to that of the control (undoped) samples. However, except for the 4 wt% nm211-doped sample, both Tc (critical temperature) and Jc (H, T) (critical current density) are enhanced in nm211-doped samples, and the Jc–H curves are different from those of control samples. The effect of nm211 particles on Jc enhancement is larger at high magnetic fields (>1 T at 77 K) than at low magnetic fields (0∼1 T). The dominant pinning mechanism by analyzing the Jc (H, T) data using the scaling theory indicate that the nm211-doped samples are originated from Δκ pinning (i.e., Tc variation); on the other hand, the control samples are originated from normal pinning (i.e., nonsuperconducting crystalline defects). It is proposed that nano-sized compositional fluctuations in the RE1+x Ba2−x Cu3O y matrix, which are products of nm211 particles and liquid peritectic reaction, act as the source of Δκ pinning centers.

Type
Articles
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Murakami, M., Sakai, N., Higuchi, T. and Yoo, S.I., Supercond. Sci. Technol. 9, 1015 (1996).CrossRefGoogle Scholar
2Nakamura, M., Yamada, Y., Hirayama, T., Ikuhara, Y., Shiohara, Y. and Tanaka, S., Physica C 259, 295 (1996).CrossRefGoogle Scholar
3Chen, I.G., Chang, F.C. and Wu, M.K., Supercond. Sci. Technol. 15, 717 (2002).CrossRefGoogle Scholar
4Chikumoto, N., Konczykowski, M., Kishio, K. and Murakami, M., Physica C 282–287, 2143 (1997).CrossRefGoogle Scholar
5Gerber, C., Anselmetti, D., Bednorz, J.G., Mannhart, J., Schlom, D. G., Nature 350, 6316 1991 p. 279.CrossRefGoogle Scholar
6Ramesh, R., Jin, S., Nakahara, S. and Tiefel, T.H., Appl. Phys. Lett. 57, 1458 (1990).CrossRefGoogle Scholar
7Lee, D.F., Selvamanickam, V. and Salama, K., Physica C 202, 83 (1992).CrossRefGoogle Scholar
8Pinol, S., Sandiumenge, F., Martinze, B., Gomis, V., Fontcuberta, J. and Obradors, X., Appl. Phys. Lett. 65, 1448 (1994).CrossRefGoogle Scholar
9Ogawa, N., Hirabayashi, I. and Tanaka, S., Physica C 177, 101 (1991).CrossRefGoogle Scholar
10Ogawa, N., Yoshida, M. and Hirbayashi, I., ISTEC J. 4, 31 (1991).Google Scholar
11McGinn, P.J., Meugnan, T., Yeung, S. and Banerjee, A., Appl. Supercond. 4, 563 (1996).CrossRefGoogle Scholar
12Karabbes, G., Fuchs, G., Schatzle, P., Grub, S., Park, J.W., Hardinghaus, F., Stover, G., Hayn, R., Drechsler, S-L and Fahr, T: Physica C 330, 118 (2000).Google Scholar
13Muralidhar, M., Jirsa, M., Nariki, S. and Murakami, M., Supercond. Sci. Technol. 14, 832 (2001).CrossRefGoogle Scholar
14Chen, S.K., Zhou, L., Zhang, S.Y., Wang, K.G., Shi, L., Wu, X.Z., Zhang, P.X. and Feng, Y., Supercond. Sci. Technol. 14, 618 (2001).CrossRefGoogle Scholar
15Wang, Z.L., Goyal, A. and Kroeger, D.M., Phys. Rev. B 47, 5373 (1993).CrossRefGoogle Scholar
16Mironova, M., Lee, D.F. and Salama, K., Physica C 211, 188 (1993).CrossRefGoogle Scholar
17Chen, S.Y., Chen, I.G.andWu, M.K., 2001, 7, Supercond. Sci. Technol. 15(2002).Google Scholar
18Chen, S.Y., Hsieh, P.C.andChen, I.G.: IEEE Transactions on Applied Superconductivity 13, 3180 (2003).CrossRefGoogle Scholar
19Xu, X.L., Guo, J.D., Wang, Y.Z. and Sozzi, A., Physica C 371, 129 (2002).CrossRefGoogle Scholar
20Raittila, J., Huhtinen, H., Paturi, P. and Stepanov, Yu.P., Physica C 371, 90 (2002).CrossRefGoogle Scholar
21Mochida, T., Chikumoto, N. and Murakami, M., Phys. Rev. B 62, 1350 (2000).CrossRefGoogle Scholar
22Higuchi, T., Yoo, S.I., Waki, K., Fujimoto, H. and Murakami, M., Physica C 282–287, 2137 (1997).CrossRefGoogle Scholar
23Hu, A., Zhou, H., Sakai, N. and Murakami, M., Appl. Phys. Lett. 81, 4796 (2002).CrossRefGoogle Scholar
24Wolf, Th., Bornarel, A-C., Kuper, H., Meier-Hirmer, R. and Obst, B., Phys. Rev. B 56, 6308 (1997).CrossRefGoogle Scholar
25Hubener, R.P.: Magnetic Flux Structures in Superconductors (Springer, Berlin, 1979).CrossRefGoogle Scholar
26Dew-Hughes, D., Philos. Mag. 30, 293 (1974).CrossRefGoogle Scholar
27Yamasaki, H., Endo, K., Kosaka, S., Umoda, M., Yoshida, S., andK. Kajimura, Phys. Rev. Lett. 70, 3331 (1993).CrossRefGoogle Scholar
28Klein, L., Yacoby, E.R., Yeshurn, Y., Erb, A., Muller-Vogt, G., Breit, V. and Wuhl, H., Phys. Rev. B 49, 4403 (1994).CrossRefGoogle Scholar
29Izumi, T., Nakamura, Y. and Shiohara, Y., J. Cryst. Growth 128, 757 (1993).CrossRefGoogle Scholar
30Koblischka, M.R., von Dalen, A.J.J., Higuchi, T., Yoo, S.I., andM. Murakami, Phys. Rev. B 58, 2863 (1998).CrossRefGoogle Scholar
31Cima, M.J., Flemings, M.C., Figuredo, A.M., Nakade, M., Ishii, H., Brody, H.D. and Haggerty, J.S., J. Appl. Phys. 72, 179 (1992).CrossRefGoogle Scholar
32Alexandor, K.B., Goyal, A., Kroeger, K.M., Selvamanickam, V. and Salama, K., Phys. Rev. B 45, 5622 (1992).CrossRefGoogle Scholar
33Shiohara, Y.andEndo, A., Mater. Sci. Eng. R19(1997).Google Scholar
34Muralidhar, M., Sakai, N., Chikumoto, N., Jirsa, M., Machi, T., Nishiyama, M., Wu, Y. and Murakami, M., Phys. Rev. Lett. 89, 237001 (2002).CrossRefGoogle Scholar
35Hu, A., Murakami, M. and Zhou, H., Appl. Phys. Lett. 83, 1788 (2003).CrossRefGoogle Scholar
36Muralidhar, M., Sakai, N., Nishiyama, M., Jirsa, M., Machi, T. and Murakami, M., Appl. Phys. Lett. 82, 943 (2003).CrossRefGoogle Scholar