Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-30T03:34:44.565Z Has data issue: false hasContentIssue false

Effect of MWCNT functionalization on thermal and electrical properties of PHBV/MWCNT nanocomposites

Published online by Cambridge University Press:  04 November 2014

Thaís Larissa do Amaral Montanheiro*
Affiliation:
Universidade Federal de São Paulo (UNIFESP), Instituto de Ciência e Tecnologia, São José dos Campos, São Paulo 12.231-280, Brazil
Fernando Henrique Cristóvan
Affiliation:
Universidade Federal de São Paulo (UNIFESP), Instituto de Ciência e Tecnologia, São José dos Campos, São Paulo 12.231-280, Brazil
João Paulo Barros Machado
Affiliation:
Instituto Nacional de Pesquisas Espaciais (INPE), Laboratório Associado de Sensores e Materiais (LAS), São José dos Campos, São Paulo 12.245-970, Brazil
Dayane Batista Tada
Affiliation:
Universidade Federal de São Paulo (UNIFESP), Instituto de Ciência e Tecnologia, São José dos Campos, São Paulo 12.231-280, Brazil
Nelson Durán
Affiliation:
Universidade Estadual de Campinas (UNICAMP), Instituto de Química, Campinas,São Paulo 13.083-970, Brazil; and Universidade Estadual de Campinas (UNICAMP), Laboratory on Nanostructures Synthesis and Biological Interactions (NanoBioss), Campinas, São Paulo 13.083-970, Brazil
Ana Paula Lemes
Affiliation:
Universidade Federal de São Paulo (UNIFESP), Instituto de Ciência e Tecnologia, São José dos Campos, São Paulo 12.231-280, Brazil; and Universidade Estadual de Campinas (UNICAMP), Instituto de Química, Campinas, São Paulo 13.083-970, Brazil
*
a) Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Pristine multiwalled carbon nanotubes (P-MWCNTs) were functionalized with carboxylic groups (MWCNT-COOH) through oxidation reactions and then reduced to produce hydroxyl groups (MWCNT-OH). Pristine and functionalized MWCNTs were used to produce poly(hydroxybutyrate-co-hydroxyvalerate) (PHBV) nanocomposites with 0.5 wt% of MWCNTs. MWCNT functionalization was verified by visual stability in water, infrared and Raman spectroscopy, and zeta potential measurements. Pristine and functionalized MWCNTs acted as the nucleating agent in a PHBV matrix, as verified by differential scanning calorimetry (DSC). However, the dispersion of filler into the matrix, thermal stability, and direct current (DC) conductivity were affected by MWCNT functionalization. Scanning electron microscopy (SEM) showed that filler dispersion into the PHBV matrix was improved with MWCNT functionalization. The surface roughness was reduced with the addition and functionalization of MWCNT. The thermal stability of PHBV/MWCNT-COOH, PHBV/P-MWCNT, and PHBV/MWCNT-OH nanocomposites were 20, 30, and 30 °C higher than neat PHBV, respectively, as verified by thermogravimetry analysis (TGA). Addition of pristine and functionalized MWCNTs provided electrical conductivity in nanocomposite, which was higher for PHBV/P-MWCNTs (1.2 × 10−5 S cm−1).

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Xu, C. and Qiu, Z.: Nonisothermal melt crystallization and subsequent melting behavior of biodegradable poly (hydroxybutyrate)/multiwalled carbon nanotubes nanocomposites. J. Polym. Sci., Part B: Polym. Phys. 47, 2238 (2009).CrossRefGoogle Scholar
Reddy, M.M., Vivekanandhan, S., Misra, M., Bhatia, S.K., and Mohanty, A.K.: Biobased plastics and bionanocomposites: Current status and future opportunities. Prog. Polym. Sci. 38, 1653 (2013).Google Scholar
Reddy, C.S., Ghai, R., and Kalia, V.: Polyhydroxyalkanoates: An overview. Bioresour. Technol. 87, 137 (2003).CrossRefGoogle ScholarPubMed
Shang, L., Fei, Q., Zhang, Y.H., Wang, X.Z., Fan, D-D., and Chang, H.N.: Thermal properties and biodegradability studies of Poly(3-hydroxybutyrate-co-3-hydroxyvalerate). J. Polym. Environ. 20, 23 (2011).Google Scholar
Zribi-Maaloul, E., Trabelsi, I., Elleuch, L., Chouayekh, H., and Salah, R.B.: Purification and characterization of two polyhydroxyalcanoates from Bacillus cereus. Int. J. Biol. Macromol. 61, 82 (2013).CrossRefGoogle ScholarPubMed
Fradinho, J.C., Domingos, J.M.B., Carvalho, G., Oehmen, A., and Reis, M.A.M.: Polyhydroxyalkanoates production by a mixed photosynthetic consortium of bacteria and algae. Bioresour. Technol. 132, 146 (2013).CrossRefGoogle ScholarPubMed
Eggers, J. and Steinbüchel, A.: Poly(3-hydroxybutyrate) degradation in Ralstonia eutropha H16 is mediated stereoselectively to (S)-3-hydroxybutyryl coenzyme A (CoA) via crotonyl-CoA. J. Bacteriol. 195, 3213 (2013).Google Scholar
Boyandin, A.N., Rudnev, V.P., Ivonin, V.N., Prudnikova, S.V., Korobikhina, K.I., Filipenko, M.L., Volova, T.G., and Sinskey, A.J.: Biodegradation of polyhydroxyalkanoate films in natural environments. Macromol. Symp. 320, 38 (2012).Google Scholar
Srubar, W.V., Pilla, S., Wright, Z.C., Ryan, C.A., Greene, J.P., Frank, C.W., and Billington, S.L.: Mechanisms and impact of fiber–matrix compatibilization techniques on the material characterization of PHBV/oak wood flour engineered biobased composites. Compos. Sci. Technol. 72, 708 (2012).Google Scholar
Liu, W.J., Yang, H.L., Wang, Z., Dong, L.S., and Liu, J.J.: Effect of nucleating agents on the crystallization of poly(3-hydroxybutyrate-co-3-hydroxyvalerate). J. Appl. Polym. Sci. 86, 2145 (2002).CrossRefGoogle Scholar
Avella, M., Bogoeva-Gaceva, G., Buz, A., Errico, M.E., Gentile, G., and Grozdanov, A.: Biocomposites reinforced with kenaf fibers. J. Appl. Polym. Sci. 104, 3192 (2007).Google Scholar
El-Hadi, A., Schnabel, R., Straube, E., Müller, G., and Henning, S.: Correlation between degree of crystallinity, morphology, glass temperature, mechanical properties and biodegradation of poly (3-hydroxyalkanoate) PHAs and their blends. Polym. Test. 21, 665 (2002).Google Scholar
Ajayan, P.M.: Nanotubes from carbon. Chem. Rev. 99, 1787 (1999).Google Scholar
Atieh, M.A., Bakather, O.Y., Al-Tawbini, B., Bukhari, A.A., Abuilaiwi, F.A., and Fettouhi, M.B.: Effect of carboxylic functional group functionalized on carbon nanotubes surface on the removal of lead from water. Bioinorg. Chem. Appl. 2010, 1 (2010).Google Scholar
Sahoo, N.G., Rana, S., Cho, J.W., Li, L., and Chan, S.H.: Polymer nanocomposites based on functionalized carbon nanotubes. Prog. Polym. Sci. 35, 837 (2010).Google Scholar
Moniruzzaman, M. and Winey, K.I.: Polymer nanocomposites containing carbon nanotubes. Macromolecules 39, 5194 (2006).Google Scholar
Hu, H., Yu, A., Kim, E., Zhao, B., Itkis, M.E., Bekyarova, E., and Haddon, R.C.: Influence of the zeta potential on the dispersability and purification of single-walled carbon nanotubes. J. Phys. Chem. B 109, 11520 (2005).Google Scholar
Vidhate, S., Innocentini-Mei, L., and Souza, N.A.D.: Mechanical and electrical multifunctional poly (3-hydroxybutyrate- co -3-hydroxyvalerate )— multiwall carbon nanotube nanocomposites. Polym. Eng. Sci. 52, 1367 (2012).Google Scholar
Liu, C-X. and Choi, J-W.: Improved dispersion of carbon nanotubes in polymers at high concentrations. Nanomaterials 2, 329 (2012).Google Scholar
Ma, P.C., Kim, J-K., and Tang, B.Z.: Functionalization of carbon nanotubes using a silane coupling agent. Carbon 44, 3232 (2006).Google Scholar
Chen, S., Shen, W., Wu, G., Chen, D., and Jiang, M.: A new approach to the functionalization of single-walled carbon nanotubes with both alkyl and carboxyl groups. Chem. Phys. Lett. 402, 312 (2005).Google Scholar
Stobinski, L., Lesiak, B., Kövér, L., Tóth, J., Biniak, S., Trykowski, G., and Judek, J.: Multiwall carbon nanotubes purification and oxidation by nitric acid studied by the FTIR and electron spectroscopy methods. J. Alloys Compd. 501, 77 (2010).Google Scholar
Scheibe, B., Borowiak-Palen, E., and Kalenczuk, R.J.: Oxidation and reduction of multiwalled carbon nanotubes - preparation and characterization. Mater. Charact. 61, 185 (2010).Google Scholar
Liu, L., Qin, Y., Guo, Z., and Zhu, D.: Reduction of solubilized multi-walled carbon nanotubes. Carbon 41, 331 (2003).Google Scholar
Damian, C., Andreea, M., and Iovu, H.: Ethylenediamine functionalization effect on the thermo-mechanical properties of epoxy nanocomposites reinforced with multiwall carbon nanotubes. U.P.B. Sci. Bull. 72, 163 (2010).Google Scholar
Antunes, E.F., Lobo, A.O., Corat, E.J., Trava-Airoldi, V.J., Martin, A.A., and Veríssimo, C.: Comparative study of first- and second-order Raman spectra of MWCNT at visible and infrared laser excitation. Carbon 44, 2202 (2006).CrossRefGoogle Scholar
Osswald, S., Havel, M., and Gogotsi, Y.: Monitoring oxidation of multiwalled carbon nanotubes by Raman spectroscopy. J. Raman Spectrosc. 38, 728 (2007).Google Scholar
Byrne, M.T., McNamee, W.P., and Gun’ko, Y.K.: Chemical functionalization of carbon nanotubes for the mechanical reinforcement of polystyrene composites. Nanotechnology 19, 1 (2008).Google Scholar
Gunaratne, L.M.W.K., Shanks, R.A., and Amarasinghe, G.: Thermal history effects on crystallisation and melting of poly(3-hydroxybutyrate). Thermochim. Acta 423, 127 (2004).Google Scholar
Owen, A.J., Heinzel, J., Škrbić, Ž., and Divjaković, V.: Crystallization and melting behaviour of PHB and PHB/HV copolymer. Polymer 33, 1563 (1992).CrossRefGoogle Scholar
Lai, M., Li, J., Yang, J., Liu, J., Tong, X., and Cheng, H.: The morphology and thermal properties of multi-walled carbon nanotube and poly(hydroxybutyrate-co-hydroxyvalerate) composite. Polym. Int. 53, 1479 (2004).Google Scholar
Yu, H-Y., Yao, J-M., Qin, Z-Y., Liu, L., and Yang, X-G.: Comparison of covalent and noncovalent interactions of carbon nanotubes on the crystallization behavior and thermal properties of poly(3-hydroxybutyrate- co -3-hydroxyvalerate). J. Appl. Polym. Sci. 130, 4299 (2013).Google Scholar
Shaffer, M.S.P. and Windle, A.H.: Fabrication and characterization of carbon nanotube/poly(vinyl alcohol) composites. Adv. Mater. 11, 937 (1999).3.0.CO;2-9>CrossRefGoogle Scholar
Li, Q.: Temperature dependence of the electrical properties of the carbon nanotube/polymer composites. eXPRESS Polym. Lett. 3, 769 (2009).Google Scholar
Aguilar, J.O., Bautista-Quijano, J.R., and Avilés, F.: Influence of carbon nanotube clustering on the electrical conductivity of polymer composite films. eXPRESS Polym. Lett. 4, 292 (2010).Google Scholar