Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-22T22:25:48.386Z Has data issue: false hasContentIssue false

The effect of interruption during the growth of strained GaAs/InGaAs/GaAs quantum wells by molecular beam epitaxy

Published online by Cambridge University Press:  03 March 2011

S.F. Yoon
Affiliation:
School of Electrical and Electronic Engineering, Nanyang Technological University, Nanyang Avenue, Singapore 2263, Republic of Singapore
H.M. Li
Affiliation:
School of Electrical and Electronic Engineering, Nanyang Technological University, Nanyang Avenue, Singapore 2263, Republic of Singapore
K. Radhakrishnan
Affiliation:
School of Electrical and Electronic Engineering, Nanyang Technological University, Nanyang Avenue, Singapore 2263, Republic of Singapore
D.H. Zhang
Affiliation:
School of Electrical and Electronic Engineering, Nanyang Technological University, Nanyang Avenue, Singapore 2263, Republic of Singapore
Get access

Abstract

Low-temperature photoluminescence measurements have been taken to monitor the changes in the properties of strained GaAs/InGaAs/GaAs quantum wells grown by molecular beam epitaxy at different substrate (well) temperatures with and without a 90 s-growth-interruption at the heterointerfaces. Sharp exciton peaks with average linewidths as low as 1.7 meV were observed in all the spectra. The spectra from the samples grown employing interrupts were narrower than those without interrupts, indicating structurally improved interfaces. Further linewidth narrowing was also seen in samples employing an additional interrupt of the same duration at the bottom InGaAs/GaAs interface, or by increasing the interrupt time at the top GaAs/InGaAs interface to 180 s. A consistent reduction in the linewidth was also observed in wells grown at higher temperatures. This is most likely due to greater indium re-evaporation leading to a reduction in strain, well width, and interface fluctuations.

Type
Articles
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Zipperian, T. E., Dawson, L. R., Drummond, T. J., Schirber, J. E., and Fritz, I. J., Appl. Phys. Lett. 52, 975 (1988).CrossRefGoogle Scholar
2Huang, K. F., Tai, K., Jewell, J. L., Fischer, R. J., McCall, S. L., and Cho, A. Y., Appl. Phys. Lett. 54, 2192 (1989).Google Scholar
3Miller, B. A. and Kirby, P. B., Appl. Phys. Lett. 61, 432 (1992).Google Scholar
4Madhukar, A., Lee, T. C., Yen, M. Y., Chen, P., Kim, J. Y., Ghaisas, S. V., and Newman, P. G., Appl. Phys. Lett. 46, 1148 (1985).CrossRefGoogle Scholar
5Sakaki, H., Tanaka, M., and Yoshino, J., Jpn. J. Appl. Phys. 24, L417 (1985).Google Scholar
6Tanaka, M., Sakaki, H., Yoshino, J., and Furuta, T., Surf. Sci. 174, 65 (1986).Google Scholar
7Fukunaga, T., Kobayashi, K. L. I, and Nakashima, H., Surf. Sci. 174, 71 (1986).Google Scholar
8Miller, R. C., Tu, C. W., Sputz, S. K., and Kopf, R. F., Appl. Phys. Lett. 49, 1245 (1986).CrossRefGoogle Scholar
9Bimberg, D., Mars, D., Miller, J. N., Bauer, R., and Oertel, D., J. Vac. Sci. Technol. B 4, 1014 (1986).Google Scholar
10SpringThorpe, A. J., Ingrey, S. J., Emmerstorfer, B., Mandeville, P., and Moore, W. T., Appl. Phys. Lett. 50, 77 (1987).CrossRefGoogle Scholar
11Reithmaier, J. P., Riechert, H., Schlotterer, H., and Weimann, G., J. Cryst. Growth 111, 407 (1991).CrossRefGoogle Scholar
12Arent, D. J., Bode, M., Bertness, K. A., Kutz, S. R., and Olson, J. M., Appl. Phys. Lett. 62, 1806 (1993).Google Scholar
13Voillot, F., Madhukar, A., Kim, J. Y., Chen, P., Cho, N. M., Tang, W. C., and Newman, P. G., Appl. Phys. Lett. 48, 1009 (1986).Google Scholar
14Weisbuch, C., Dingle, R., Gossard, A. C., and Wiegmann, W., Solid State Commun. 38, 709 (1981).Google Scholar
15Bode, M. and Ourmazd, A., J. Vac. Sci. Technol. B 10, 1787 (1992).CrossRefGoogle Scholar
16Warwick, C. A. and Kopf, R. F., Appl. Phys. Lett. 60, 386 (1992).Google Scholar
17Warwick, C. A., Jan, W. Y., Ourmazd, A., and Harris, T. D., Appl. Phys. Lett. 56, 2666 (1990).Google Scholar
18Gammon, D., Shanabrook, B. V., and Katzer, D. S., Phys. Rev. Lett. 67, 1547 (1991)Google Scholar