Hostname: page-component-7bb8b95d7b-wpx69 Total loading time: 0 Render date: 2024-09-15T18:43:24.219Z Has data issue: false hasContentIssue false

Effect of filament architecture on magnetic flux distributions in multifilamentary (Bi, Pb)2Sr2Ca2Cu3Ox/Ag composites

Published online by Cambridge University Press:  31 January 2011

Debra L. Kaiser
Affiliation:
Ceramics Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899
Marina Turchinskaya
Affiliation:
Ceramics Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899
Gilbert N. Riley Jr.
Affiliation:
American Superconductor Corporation, Two Technology Drive, Westborough, Massachusetts 01581
Craig Christopherson
Affiliation:
American Superconductor Corporation, Two Technology Drive, Westborough, Massachusetts 01581
Get access

Abstract

Multifilamentary (Bi, Pb)2Sr2Ca2Cu3Ox/Ag composites have been studied by a nondestructive magneto-optical imaging technique in order to determine the effect of filament architecture on the local magnetic flux distribution. The images reveal the homogeneity of the flux distribution in the upper layer filaments under magnetizing and demagnetizing conditions, and the alignment and morphology of these filaments in tapes with nine different composite structures. Certain types of filament arrangements led to homogeneous flux distributions, while other types caused localized inhomogeneities in the flux distribution. Nonuniform filament thickness also resulted in a highly inhomogeneous flux distribution. These results are useful in selecting optimal composite structures for power applications.

Type
Articles
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Riley, G. N. Jr, Parker, D. R., Christopherson, C. J., Miles, P. K., Pickett, J. J., Hughson, S. E., Schreiber, J. D., Polyanskii, A., Pashitski, A., and Larbalestier, D. C., Physica C 235–240, 3407 (1994).CrossRefGoogle Scholar
2.Lubkin, G. B., Physics Today 49(3), 48 (1996).CrossRefGoogle Scholar
3.Pashitski, A. E., Polyanskii, A., Gurevich, A., Parrell, J. A., and Larbalestier, D. C., Physica C 246, 133 (1995).CrossRefGoogle Scholar
4.Pashitski, A. E., Polyanskii, A., Gurevich, A., Parrell, J. A., and Larbalestier, D. C., Appl. Phys. Lett. 67, 2720 (1995).CrossRefGoogle Scholar
5.Welp, U., Gunter, D. O., Crabtree, G. W., Zhong, W., Balachandran, U., Haldar, P., Sokolowski, R. S., Vlasko-Vlasov, V. K., and Nikitenko, V. I., Nature 376, 44 (1995).CrossRefGoogle Scholar
6.Schuster, Th., Kuhn, H., Weißhardt, A., Kronmüller, H., Roas, B., Eibl, O., Leghissa, M., and Neumüller, H-W., Appl. Phys. Lett. 69, 1954 (1996).CrossRefGoogle Scholar
7.Welp, U., Gunter, D. O., Crabtree, G. W., Luo, J. S., Maroni, V. A., Carter, W. L., Vlasko-Vlasov, V. K., and Nikitenko, V. I., Appl. Phys. Lett. 66, 1270 (1995).CrossRefGoogle Scholar
8.Parrell, J. A., Polyanskii, A. A., Pashitski, A. E., and Larbalestier, D. C., Supercond. Sci. Technol. 9, 393 (1996).CrossRefGoogle Scholar
9.Turchinskaya, M., Kaiser, D. L., Shapiro, A. J., Riley, G. N. Jr, and Christopherson, C., J. Mater. Res. 11, 1597 (1996).CrossRefGoogle Scholar
10.Lahtinen, M., Passi, J., Sarkaniemi, J., Han, Z., and Freltoft, T., Physica C 244, 11 (1995).CrossRefGoogle Scholar
11.Christopherson, C. J. and Riley, G. N. Jr, Appl. Phys. Lett. 66, 2277 (1995).CrossRefGoogle Scholar
12.Dorosinskii, L. A., Indenbom, M. V., Nikitenko, V. I., Yu.Ossip'yan, A., Polyanskii, A. A., and Vlasko-Vlasov, V. K., Physica C 203, 149 (1992).CrossRefGoogle Scholar
13.Turchinskaya, M., Kaiser, D. L., Gayle, F. W., Shapiro, A. J., Roytburd, A., Vlasko-Vlasov, V., Polyanskii, A., and Nikitenko, V., Physica C 216, 205 (1993).CrossRefGoogle Scholar
14.Vlasko-Vlasov, V. K., Dorosinskii, L. A., Polyanskii, A. A., Nikitenko, V. I., Welp, U., Veal, B. W., and Crabtree, G. W., Phys. Rev. Lett. 72, 3246 (1994).CrossRefGoogle Scholar
15.Turchinskaya, M., Kaiser, D. L., Gayle, F. W., Shapiro, A. J., Roytburd, A., Dorosinskii, L. A., Nikitenko, V. I., Polyanskii, A. A., and Vlasko-Vlasov, V. K., Physica C 221, 62 (1994).CrossRefGoogle Scholar
16.Vlasko-Vlasov, V. K., Goncharov, V. N., Nikitenko, V. I., Polyanskii, A. A., Voloshin, I. F., Fisher, L. M., Aleshina, N. M., and Poluschenko, O. A., Physica C 222, 367 (1994).CrossRefGoogle Scholar
17.Turchinskaya, M., Kaiser, D. L., Shapiro, A. J., and Schwartz, J., Physica C 246, 375 (1995).CrossRefGoogle Scholar
18.Polyanskii, A. A., Gurevich, A., Pashitski, A. E., Heinig, N. F., Redwing, R. D., Nordman, J. E., and Larbalestier, D. C., Phys. Rev. B 53, (1996).CrossRefGoogle Scholar
19.Pashitski, A. E., Gurevich, A., Polyanskii, A. A., Larbalestier, D. C., Goyal, A., Specht, E. D., Kroeger, D. M., DeLuca, J. A., and Tkaczyk, J. E., Science 275, 367 (1997).CrossRefGoogle Scholar