Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-27T05:31:28.510Z Has data issue: false hasContentIssue false

The effect of ferroelastic coupling in controlling the abnormal aging behavior in lead magnesium niobate-lead titanate relaxor ferroelectrics

Published online by Cambridge University Press:  31 January 2011

Q. M. Zhang
Affiliation:
Materials Research Laboratory, The Pennsylvania State University, University Park, Pennsylvania 16802
J. Zhao
Affiliation:
Materials Research Laboratory, The Pennsylvania State University, University Park, Pennsylvania 16802
T. R. Shrout
Affiliation:
Materials Research Laboratory, The Pennsylvania State University, University Park, Pennsylvania 16802
L. E. Cross
Affiliation:
Materials Research Laboratory, The Pennsylvania State University, University Park, Pennsylvania 16802
Get access

Abstract

The abnormal aging behavior, i.e., severe aging in the electric field induced piezoelectric coefficient while very weak dielectric aging, observed in the relaxor ferroelectric lead magnesium niobate-lead titanate (PMN-PT) ceramics under a dc electric bias field, can be significantly reduced by hot isostatic pressing (HIP) treatment on presintered samples. The aging can also be reduced by doping suitable amounts of either La (donor) or Mn (acceptor). We suggest that the reduction in the aging is due to the introduction of additional random fields into the material, which reduces the probability of the growth of micropolar regions into metastable and/or stable macropolar domains. The abnormal aging behavior and the effectiveness of HIP in reducing it indicate the importance of the elastic energy in controlling the aging and relaxor behavior in PMN-PT relaxor ferroelectrics.

Type
Articles
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Schulze, W. A., Biggers, J. V., and Cross, L. E., J. Am. Ceram. Soc. 61, 46 (1978).CrossRefGoogle Scholar
2.Borchhardt, G., von Cieminski, J., and Schmidt, G., Phys. Status Solidi (a) 59, 749 (1980).CrossRefGoogle Scholar
3.Pan, W., Furman, E., Dayton, G. O., and Cross, L. E., J. Mater. Sci. Lett. 5, 647 (1986).CrossRefGoogle Scholar
4.Shrout, T. R., Huebner, W., Randall, C. A., and Hilton, A. D., Ferroelectrics 93, 361 (1989).CrossRefGoogle Scholar
5.Schulze, W. A. and Ogino, K., Ferroelectrics 87, 361 (1988).CrossRefGoogle Scholar
6.Zhang, Q. M., Zhao, J., and Cross, L. E., J. Appl. Phys. 79, 3181 (1996).CrossRefGoogle Scholar
7.Nomura, T., Kawano, N., Yamamatsu, J., Arashi, T., Nakano, Y., and Sato, A., Jpn. J. Appl. Phys. 34, 5389 (1995).CrossRefGoogle Scholar
8.Ngai, K. L., Rajagopal, A. K., and Huang, C. Y., J. Appl. Phys. 55, 1714 (1984).CrossRefGoogle Scholar
9.Swartz, S. L. and Shrout, T. R., Mater. Res. Bull. 17, 1245 (1982).CrossRefGoogle Scholar
10.Choi, S. W., Shrout, T. R., Jang, S. J., and Bhalla, A. S., Ferroelectrics 100, 29 (1989).CrossRefGoogle Scholar
11.Jang, S. J., Ph.D. Thesis, The Pennsylvania State University (1979).Google Scholar
12.Zhang, Q. M., Jang, S. J., and Cross, L. E., J. Appl. Phys. 65, 2807 (1989).CrossRefGoogle Scholar
13.Sinha, J. K., J. Sci. Instrum. 42, 696 (1965).CrossRefGoogle Scholar
14.Cross, L. E., Ferroelectrics 76, 241 (1987).CrossRefGoogle Scholar
15.Smolenskii, G. A., J. Phys. Soc. Jpn. 28, 26 (1970).Google Scholar
16.Viehland, D., Jang, S., Cross, L. E., and Wuttig, M., Philos. Mag. B 64, 335 (1991).CrossRefGoogle Scholar
17.Hilton, A. D., Randall, C. R., Barber, D. J., and Shrout, T. R., Ferroelectrics 93, 379 (1989).CrossRefGoogle Scholar
18.Devonshire, A. F., Philos. Mag. 3, 85 (1954).Google Scholar
19.Arlt, G., private communications.Google Scholar
20.Cullity, B. D., Elements of x-ray diffraction (Addison-Wesley Publishing Company, Inc., Reading, MA, 1977).Google Scholar
21.Kim, N., Thesis, M.S., The Pennsylvania State University (1990).Google Scholar
22.Lambeck, P. V. and Jonker, G. H., Ferroelectrics 22, 729 (1978).CrossRefGoogle Scholar
23.Smyth, D. M., Prog. Solid State Chem. 15, 145 (1984).CrossRefGoogle Scholar