Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-26T06:41:16.237Z Has data issue: false hasContentIssue false

The effect of excess bismuth on the ferroelectric properties of SrBi2Ta2O9 thin films

Published online by Cambridge University Press:  31 January 2011

Tze-Chiun Chen
Affiliation:
Department of Materials Science and Engineering, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061–0237
Tingkai Li
Affiliation:
Department of Materials Science and Engineering, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061–0237
Xubai Zhang
Affiliation:
Department of Materials Science and Engineering, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061–0237
Seshu B. Desu*
Affiliation:
Department of Materials Science and Engineering, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061–0237
*
a)Author to whom correspondence should be addressed.
Get access

Abstract

The effect of excess bismuth on the ferroelectric properties of SrBi2Ta2O9 (SBT) thin films having a perovskite-like layered structure was investigated for excess bismuth contents ranging from 0% to 100%. For the first time, a limited solid solution of SBT and Bi2O3 was shown to exist when the amount of excess Bi was less than 50%. The formation of a solid solution enhanced the grain size and a-b plane orientation of the films, resulting in substantial improvement in the ferroelectric hysteresis properties of the films. On the other hand, when the amount of excess Bi exceeded 50%, Bi2O3 appeared as a second phase which led to high leakage current and poor ferroelectric hysteresis curves. 30–50% excess Bi content was found to be the optimum composition with respect to grain size, crystallographic orientation, and single phase formation. Within this range, SBT films exhibit low leakage current density (˜10−9 A/cm2) and maximum remanent polarization (2Pr ˜12 µC/cm2).

Type
Articles
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Scott, J. F. and Araujo, C. A., Science 246, 1400 (1989).CrossRefGoogle Scholar
2.Dey, S. and Zuleeg, R., Ferroelectrics 108, 37 (1990).CrossRefGoogle Scholar
3.Bondurant, D. and Grandinger, F., IEEC Spec., 30 (1989).Google Scholar
4. Ramtron Corporation (Colorado Springs, CO) started introducing its 4Kbit, 8Kbit, and 16Kbit FRAM's in 19881993.Google Scholar
5.Melnick, B. M., Araujo, C. A., Mcmillan, L. D., Carver, D. A., and Scott, J. F., Ferroelectrics 116, 79 (1991).CrossRefGoogle Scholar
6.Peng, C. H., Chang, J., and Desu, S. B., in Ferroelectric Thin Films II, edited by Kingon, A. I., Myers, E. R., and Tuttle, B. (Mater. Res. Soc. Symp. Proc. 243, Pittsburgh, PA, 1992), p. 21.Google Scholar
7.Aoki, K., Fukuda, Y., and Nishimura, A., J. Appl. Phys. 32, 4147 (1993).CrossRefGoogle Scholar
8.Fox, G. R. and Krupanidhi, S. B., J. Mater. Res. 9, 699 (1994).CrossRefGoogle Scholar
9.Chang, J-F. and Desu, S. B., J. Mater. Res. 9, 955 (1994).CrossRefGoogle Scholar
10.Bai, G. R., Chang, H. L. M., Foster, C. M., Shen, Z., and Lam, D. J., J. Mater. Res. 9, 156 (1994).CrossRefGoogle Scholar
11.Desu, S. B. and Yoo, I. K., J. Electrochem. Soc. 140 (9), L133 (1993).CrossRefGoogle Scholar
12.Yoo, I. K. and Desu, S. B., J. Intelligent Material Systems and Structures 4, 488 (1993).CrossRefGoogle Scholar
13.Bursill, L. A., Reaney, I. M., Vijay, D. P., and Desu, S. B., J. Appl. Phys. 75 (3), 1521 (1994).CrossRefGoogle Scholar
14.A-Paz de Araujo, C., Cuchlaro, J. D., Scott, M. C., Mcmillan, L. D., and Scott, J. F., Nature (London) 374, 627 (1995).CrossRefGoogle Scholar
15.Desu, S. B. and Li, T. K., Mater. Sci. Eng. B34, L4 (1995).CrossRefGoogle Scholar
16.Vijay, D. P., Desu, S. B., Nagata, M., Zhang, X., and Chen, T. C., in Ferroelectric Thin Films IV, edited by Desu, S. B., Tuttle, B. A., Ramesh, R., and Shiosaki, T. (Mater. Res. Soc. Symp. Proc. 361, Pittsburgh, PA, 1995), p. 3.Google Scholar
17.Desu, S. B. and Vijay, D. P., Mater. Sci. Eng. B32, 75 (1995).CrossRefGoogle Scholar
18.Aurivillius, B., Arki. Kemi. 1, 463 (1949).Google Scholar
19.Chen, T-C., Li, T. K., Zhang, X., and Desu, S. B., J. Mater. Res. (1997, in press).Google Scholar
20.Desu, S. B. and Vijay, D. P., Mater. Sci. Eng. B32, 83 (1995).CrossRefGoogle Scholar
21.Newnham, R. E., Wolfe, R. W., Horsey, R. S., Diaz-Colon, F. A., and Kay, M. I., Mater. Res. Bull. 8, 1183 (1973).CrossRefGoogle Scholar
22.Smolenskii, G. A., Isupov, V. A., and Agranovskaya, A. I., Sov. Phys.–Solid State 3 (3), 651 (1961).Google Scholar