Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-26T04:29:30.086Z Has data issue: false hasContentIssue false

The effect of epitaxy on the upper critical fields of evaporated niobium films

Published online by Cambridge University Press:  31 January 2011

Gin-ichiro Oya
Affiliation:
Research Institute of Electrical Communication, Tohoku University, Sendai 980, Japan
Tetsuro Komukai
Affiliation:
Research Institute of Electrical Communication, Tohoku University, Sendai 980, Japan
Yasuji Sawada
Affiliation:
Research Institute of Electrical Communication, Tohoku University, Sendai 980, Japan
Get access

Abstract

Two upper critical fields normal (Bc2⊥) and parallel (Bc2∥) to the surfaces of both single-crystal and polycrystalline Nb films are studied at 4.2 K in relation to the purity and morphology of the films, in order to make properties of the single-crystal films clear. High-quality single-crystal Nb films (with transition temperature Tc of ∼9.3 K and normal resistivity ρn of ∼0.2 μΩ · cm) are found to have magnetic properties characterized by Bc2⊥ of 0.31 T as low as Bc2 (bulk upper critical field) of bulk Nb, and Bc2∥/Bc2⊥ of ∼1.85 as high as Bc3/Bc2 (where Bc3 is the surface nucleation critical field) of pure Nb. These properties depend strongly on high purity and surface smoothness of the films, which is naturally accompanied by superconductivity. Polycrystalline Nb films have higher Bc2⊥ and lower Bc2∥/Bc2⊥, which result from a decrease in purity of the films and a presence of normal-conducting niobium-suboxide layers at the surfaces of the films, and thereby a decrease of the surface effect in the films.

Type
Articles
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Gurvitch, M., Washington, M. A., and Huggins, H. A., Appl. Phys. Lett. 42, 472 (1983).CrossRefGoogle Scholar
2Shoji, A., Aoyagi, M., Kosaka, S., Shinoki, F., and Hayakawa, H., Appl. Phys. Lett. 46, 1098 (1985).CrossRefGoogle Scholar
3Morohashi, S., Shinoki, F., Shoji, A., Aoyagi, M., and Hayakawa, H., Appl. Phys. Lett. 46, 1179 (1985).CrossRefGoogle Scholar
4Mayadas, A.F., Laibowitz, R. B., and Cuomo, J.J., J. Appl. Phys. 43, 1287 (1972).CrossRefGoogle Scholar
5Oya, G., Koishi, M., and Sawada, Y., J. Appl. Phys. 60, 1440 (1986).CrossRefGoogle Scholar
6Oya, G., Komukai, T., and Sawada, Y., Proc. 18th Int. Conf. Low Temp. Phys., edited by Nagaoka, Y. (Academic Press, Tokyo, 1987), p. 1517.Google Scholar
7DeSorbo, W., Phys. Rev. 132, 107 (1963).CrossRefGoogle Scholar
8Koch, C. C., Scarbrough, J. O., and Kroeger, D. M., Phys. Rev. B 9, 888 (1974).CrossRefGoogle Scholar
9Helfand, E. and Werthamer, N. R., Phys. Rev. Lett. 13, 686 (1964).CrossRefGoogle Scholar
10Helfand, E. and Werthamer, N.R., Phys. Rev. 147, 288 (1966).CrossRefGoogle Scholar
11Maki, K., Physics 1, 21 (1964); 127 (1964).CrossRefGoogle Scholar
12Bardeen, J., Cooper, L.N., and Schrieffer, J.R., Phys. Rev. 108, 1175 (1957).CrossRefGoogle Scholar
13McConville, T. and Serin, B., Phys. Rev. 140, A1169 (1965).CrossRefGoogle Scholar
14Finnemore, D. K., Stromberg, T. F., and Swenson, C. A., Phys. Rev. 149, 231 (1966).CrossRefGoogle Scholar
15Goodman, B.B., IBM J. Res. Dev. 6, 63 (1962).CrossRefGoogle Scholar
16Saint-James, D. and Gennes, P. G., Phys. Lett. 7, 306 (1963).CrossRefGoogle Scholar
17Roberts, B. W., J. Phys. Chem. Ref. Data 5, 754 (1976).CrossRefGoogle Scholar
18Harden, J.L. and Arp, V., Cryogen. 3, 105 (1963).CrossRefGoogle Scholar
19Webb, G. W., Solid State Commun. 6, 33 (1968).CrossRefGoogle Scholar
20Hopkins, J. R. and Finnemore, D. K., Phys. Rev. B 9, 108 (1974).CrossRefGoogle Scholar
21Hu, C.-R. and Korenman, V., Phys. Rev. 178, 684 (1969).CrossRefGoogle Scholar
22Hu, C.-R. and Korenman, V., Phys. Rev. 185, 672 (1969).CrossRefGoogle Scholar
23Hu, C.-R., Phys. Rev. 187, 574 (1969).CrossRefGoogle Scholar
24Saint-James, D., Sarma, G., and Thomas, E. J., Type II Superconductivity, edited by Haar, D. Ter (Pergamon, Oxford, 1969), p. 81.Google Scholar