Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-09T20:26:22.380Z Has data issue: false hasContentIssue false

Effect of divalent cations on the synthesis of citrate-gel-derived lanthanum hexaluminate powders and films

Published online by Cambridge University Press:  31 January 2011

Michael K. Cinibulk
Affiliation:
Air Force Research Laboratory, Materials and Manufacturing Directorate, Wright-Patterson Air Force Base, Ohio 45433–7817
Get access

Abstract

Low-temperature synthesis of hexaluminate phases for fiber–matrix interphases in ceramic–matrix composites is necessary to minimize processing temperatures to prevent fiber-strength degradation. Citrate-gel-derived lanthanum hexaluminate was synthesized using divalent transition-metal cations to stabilize the magnetoplumbite structure. Pure, undoped LaAl11O18 was obtained in 1 h only at temperatures >1500 °C after the formation and subsequent consumption of the intermediate perovskite, LaAlO3, which first appeared at ∼1150 °C. Powders of LaMAl11O19, where M = Mg, Mn, Fe, Co, Ni, Cu, and Zn, were prepared at much lower temperatures. Highly crystalline, phase-pure powders of LaMnAl11O19 and LaCuAl11O19 were obtained at 1000 °C in 1 h directly from the amorphous powder without the formation of the intermediate perovskite. All other compositions could be obtained at 1100 °C in 1 h except for the nominal LaNiAl11O19, which formed primarily LaAlO3, NiAl2O4, and Al2O3. Powders containing dopants all had similar grain sizes and morphologies at 1200 and 1500 °C; the grain size of powders with dopants was significantly greater than that of pure LaAl11O18 powder. The introduction of a second charge-compensating quadrivalent dopant for excess divalent cation did not greatly influence synthesis or grain growth below the eutectic temperature but did seem to enhance the [0001] texture of films on single-crystal yttrium-aluminum garnet substrates compared with singly doped films.

Type
Articles
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Morgan, P.E.D and Marshall, D.B., Mater. Sci. Eng. A162, 15 (1993).CrossRefGoogle Scholar
2.Cinibulk, M.K., Ceram. Eng. Sci. Proc. 15, 721 (1994).CrossRefGoogle Scholar
3.Cinibulk, M.K., Ceram. Eng. Sci. Proc. 16, 633 (1995).CrossRefGoogle Scholar
4.Cinibulk, M.K. and Hay, R.S., J. Am. Ceram. Soc. 79, 1233 (1996).CrossRefGoogle Scholar
5.Cinibulk, M.K., Hay, R.S., and Dutton, R.E., in Ceramic Microstructures: Control at the Atomic Level, edited by Tomsia, A.P. and Glaeser, A.M. (Plenum Press, New York, 1998), p. 731.CrossRefGoogle Scholar
6.Cinibulk, M.K., J. Am. Ceram. Soc. 81, 3157 (1998).CrossRefGoogle Scholar
7.Parthasarathy, T.A., Boakye, E., Cinibulk, M.K., and Petry, M.D., J. Am. Ceram. Soc. (in press).Google Scholar
8.Cinibulk, M.K., J. Mater. Sci. Lett. 14, 651 (1995).CrossRefGoogle Scholar
9.Lewis, M., Cain, M., Doleman, P., Razzell, A., and Gent, J., Ceram. Trans. 58, 41 (1995).Google Scholar
10.Cain, M., Cain, R., and Lewis, M., J. Am. Ceram. Soc. 80, 1873 (1997).CrossRefGoogle Scholar
11.Sambasivan, S., Morris, J., and Petusky, W., Ceram. Eng. Sci. Proc. 17, 250 (1996).CrossRefGoogle Scholar
12.Beevers, C.A. and Ross, M.A.S, Z. Kristall. 97, 59 (1937).CrossRefGoogle Scholar
13.Iyi, N., Takekawa, S., and Kimura, S., J. Solid State Chem. 83, 8 (1989).CrossRefGoogle Scholar
14.Cinibulk, M.K., Ceram. Eng. Sci. Proc. 19, 27 (1998).CrossRefGoogle Scholar
15.Funkenbusch, A.W. and Smith, D.W., Metall. Trans. A 6A, 2299 (1975).CrossRefGoogle Scholar
16.Jupp, R.S., Stein, D.F., and Smith, D.W., J. Mater. Sci. 15, 96 (1980).CrossRefGoogle Scholar
17.de With, G. and Hattu, N., J. Mater. Sci. 16, 841 (1981).CrossRefGoogle Scholar
18.de With, G., J. Mater. Sci. 19, 2195 (1984).CrossRefGoogle Scholar
19.Cook, R.F. and Schrott, A.G., J. Am. Ceram. Soc. 71, 50 (1988).CrossRefGoogle Scholar
20.Ropp, R.C. and Carroll, B., J. Am. Ceram. Soc. 63, 416 (1980).CrossRefGoogle Scholar
21.Cinibulk, M.K., J. Mater. Res. 10, 71 (1995).CrossRefGoogle Scholar
22.Jero, P.D., Rebillat, F., Kent, D.J., and Jones, J.G., Ceram. Eng. Sci. Proc. 19, 359 (1998).CrossRefGoogle Scholar
23.Kohatsu, I. and Brindley, G.W., Z. Phys. Chem. N. F. 60, 79 (1968).CrossRefGoogle Scholar
24.Miura, M., Hongoh, H., Yogo, T., Hirano, S., and Fuji, T., J. Mater. Sci. 29, 262 (1994).CrossRefGoogle Scholar
25.Collongues, R., Gourier, D., Kahn-Harari, A., Lejus, A.M., Théry, J., and Vivien, D., Ann. Rev. Mater. Sci. 20, 51 (1990).CrossRefGoogle Scholar
26.Iyi, N., Inoue, Z., Takekawa, S., and Kimura, S., J. Solid State Chem. 54, 70 (1984).CrossRefGoogle Scholar
27.Verstegen, J.M.P.J, Sommerdijk, J.L., and Verriet, J.G., J. Lumin. 6, 425 (1973).CrossRefGoogle Scholar
28.Sommerdijk, J.L. and Verstegen, J.M.P.J, J. Lumin. 9, 415 (1974).CrossRefGoogle Scholar
29.Kahn, A., Lejus, A.M., Madsac, M., Théry, J., and Vivien, D., J. Appl. Phys. 52, 6864 (1981).CrossRefGoogle Scholar
30.Saber, D. and Lejus, A.M., Mater. Res. Bull. 16, 1325 (1981).CrossRefGoogle Scholar
31.Laville, F. and Lejus, A.M., J. Cryst. Growth 63, 426 (1983).CrossRefGoogle Scholar
32.Gasperin, M., Saine, M.C., Kahn, A., Laville, F., and Lejus, A.M., J. Solid State Chem. 54, 61 (1984).CrossRefGoogle Scholar
33.Laville, F., Perrin, M., Lejus, A.M., Gasperin, M., Moncorge, R., and Vivien, D., J. Solid State Chem. 65, 301 (1986).CrossRefGoogle Scholar
34.Tronc, F., Laville, F., Gasperin, M., Lejus, A.M., and Vivien, D., J. Solid State Chem. 81, 192 (1989).CrossRefGoogle Scholar
35.Morgan, P.E.D and Miles, J.A., J. Am. Ceram. Soc. 69, C157 (1986).Google Scholar
36.Cutler, I.B., Bradshaw, C., Christensen, C.J., and Hyatt, E.P., J. Am. Ceram. Soc. 40, 134 (1957).CrossRefGoogle Scholar
37.Ikuma, Y. and Gordon, R.S., J. Mater. Sci. 17, 2961 (1982).CrossRefGoogle Scholar
38.Ikuma, Y. and Gordon, R.S., J. Am. Ceram. Soc. 66, 139 (1983).CrossRefGoogle Scholar
39.Gordon, R.S., in Structure and Properties of MgO and Al2O3 Ceramics, edited by Kingery, W.D. (American Ceramic Society, Columbus, OH, 1984), p. 718.Google Scholar
40.Cannon, W.R., in Structure and Properties and MgO and Al2O3 Ceramics, edited by Kingery, W.D. (American Ceramic Society, Columbus, OH, 1984), p. 741.Google Scholar
41.Xue, L.A. and Chen, I-W., J. Am. Ceram. Soc. 79, 233 (1996).CrossRefGoogle Scholar
42.Pechini, M.P., U.S. Patent No. 3 330 697 (11 July, 1967).Google Scholar
43.Marcilly, C., Courty, P., and Delmon, B., J. Am. Ceram. Soc. 53, 56 (1970).CrossRefGoogle Scholar
44.Eror, N.G. and Anderson, H.U., in Better Ceramics Through Chemistry II, edited by Brinker, C.J., Clark, D.E., and Ulrich, D.R. (Mater. Res. Soc. Symp. Proc. 73, Pittsburgh, PA, 1986), p. 571.Google Scholar
45.Lessing, P.A., Am. Ceram. Soc. Bull. 68, 1002 (1989).Google Scholar
46.Lee, S-J. and Kriven, W.M., Ceram. Eng. Sci. Proc. 19, 469 (1998).CrossRefGoogle Scholar
47.Roy, S.K. and Coble, R.L., J. Am. Ceram. Soc. 51, 1 (1968).CrossRefGoogle Scholar
48.Park, J-G. and Cormack, A.N., J. Solid State Chem. 130, 199 (1997).CrossRefGoogle Scholar
49.Cahn, J.W., Acta Metall. 10, 789 (1962).CrossRefGoogle Scholar
50.Readey, D.W., J. Am. Ceram. Soc. 49, 366 (1966).CrossRefGoogle Scholar
51.Kaysser, W.A., Sprissler, M., Handwerker, C.A., and Blendell, J.E., J. Am. Ceram. Soc. 70, 339 (1987).CrossRefGoogle Scholar
52.Song, H. and Coble, R.L., J. Am. Ceram. Soc. 73, 2077 (1990).CrossRefGoogle Scholar
53.Smothers, W.J. and Reynolds, H.J., J. Am. Ceram. Soc. 37, 588 (1954).CrossRefGoogle Scholar
54.Cahoon, H.P. and Christensen, C.J., J. Am. Ceram. Soc. 39, 337 (1956).CrossRefGoogle Scholar
55.Keski, J.R. and Cutler, I.B., J. Am. Ceram. Soc. 48, 653 (1965).CrossRefGoogle Scholar
56.Keski, J.R. and Cutler, I.B., J. Am. Ceram. Soc. 51, 440 (1968).CrossRefGoogle Scholar
57.Winkler, E.R., Sarver, J.F., and Cutler, I.B., J. Am. Ceram. Soc. 49, 634 (1966).CrossRefGoogle Scholar
58.Ikegami, T., Kotani, K., and Eguchi, K., J. Am. Ceram. Soc. 70, 885 (1987).CrossRefGoogle Scholar
59.Bagley, R.D., Cutler, I.B. and Johnson, D.L., J. Am. Ceram. Soc. 53, 136 (1970).CrossRefGoogle Scholar
60.Rao, W.R. and Cutler, I.B., J. Am. Ceram. Soc. 56, 588 (1973).CrossRefGoogle Scholar
61.Xue, L.A. and Chen, I-W., J. Mater. Sci. Lett. 11, 443 (1992).CrossRefGoogle Scholar
62.McArdle, J.L. and Messing, G.L., J. Am. Ceram. Soc. 76, 214 (1993).CrossRefGoogle Scholar
63.Horn, D.S. and Messing, G.L., Mater. Sci. Eng. A195, 169 (1995).CrossRefGoogle Scholar
64.Tartaj, J. and Messing, G.L., J. Mater. Sci. Lett. 16, 168 (1997).CrossRefGoogle Scholar
65.Powers, J.D. and Glaeser, A.M., Ceram. Eng. Sci. Proc. 18, 617 (1997).CrossRefGoogle Scholar
66.Hollenberg, G.W. and Gordon, R.S., J. Am. Ceram. Soc. 56, 140 (1973).CrossRefGoogle Scholar
67.Lessing, P.A. and Gordon, R.S., J. Mater. Sci. 12, 2291 (1977).CrossRefGoogle Scholar
68.Bae, S.I. and Baik, S., J. Mater. Sci. 28, 4197 (1993).CrossRefGoogle Scholar