Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-23T09:16:19.878Z Has data issue: false hasContentIssue false

Effect of defects on graphitization of SiC

Published online by Cambridge University Press:  28 December 2012

Göknur Cambaz Büke*
Affiliation:
Department of Materials Science and Engineering, Cankaya University, Ankara, Turkey
Gleb Yushin
Affiliation:
School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332
Vadym Mochalin
Affiliation:
Department of Materials Science and Engineering, A.J. Drexel Nanotechnology Institute, Philadelphia, Pennsylvania 19104
Yury Gogotsi
Affiliation:
Department of Materials Science and Engineering, A.J. Drexel Nanotechnology Institute, Philadelphia, Pennsylvania 19104
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Epitaxial graphene and carbon nanotubes (CNTs) grown on SiC have shown big potential in electronics. The motivation to produce faster and smaller electronic devices using less power opened the way to a study of how to produce controlled epitaxial graphene and CNTs on SiC. Since defects are among the important tools to control the properties of materials, the effects of defects on the carbon formation on SiC have been analyzed. In this study, the effects of defects on the carbon formation on SiC have been analyzed. We produced carbon films on the surface of four different SiC materials (polycrystalline sintered SiC disks, single crystalline SiC wafers, SiC whiskers, and nanowhiskers) by chlorination and vacuum annealing with the goal to understand the effects of surface defects on the carbon structure and the SiC decomposition rate. We have shown that grain boundaries, dislocations, scratches, surface steps, and external surfaces may greatly enhance the reaction rate and affect the final structure of carbon derived from SiC.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Presser, V., Heon, M., and Gogotsi, Y.: Carbide-derived carbons - from porous networks to nanotubes and graphene. Adv. Funct. Mater. 21(5), 810833 (2011).CrossRefGoogle Scholar
Gogotsi, Y.G., Nickel, K.G., Bahloul-Hourlier, D., Merle-Mejean, T., Khomenko, G.E., and Skjerlie, K.P.: Structure of carbon produced by hydrothermal treatment of beta-SiC powder. J. Mater. Chem. 6(4), 595604 (1996).CrossRefGoogle Scholar
Kusunoki, M., Suzuki, T., Kaneko, K., and Ito, M.: Formation of self-aligned carbon nanotube films by surface decomposition of silicon carbide. Philos. Mag. Lett. 79(4), 153161 (1999).CrossRefGoogle Scholar
Norimatsu, W. and Kusunoki, M.: Formation process of graphene on SiC (0001). Physica E 42(4), 691694 (2010).CrossRefGoogle Scholar
Hass, J., De Heer, W.A., and Conrad, E.H.: The growth and morphology of epitaxial multilayer graphene. J. Phys. Condens. Matter 20, 323202 (2008).CrossRefGoogle Scholar
Cambaz, Z.G., Yushin, G., Osswald, S., Mochalin, V., and Gogotsi, Y.: Noncatalytic synthesis of carbon nanotubes, graphene and graphite on SiC. Carbon 46(6), 841849 (2008).CrossRefGoogle Scholar
Ersoy, D., Mcnallan, M.J., and Gogotsi, Y.G.: Carbon coatings produced by high temperature chlorination of silicon carbide ceramics. Mater. Res. Innovations 5(2), 5562 (2001).CrossRefGoogle Scholar
Ming, F. and Zangwill, A.: Model and simulations of the epitaxial growth of graphene on non-planar 6H-SiC surfaces. J. Phys. D: Appl. Phys. 45, 154007 (2012).CrossRefGoogle Scholar
Robinson, J., Weng, X.J., Trumbull, K., Cavalero, R., Wetherington, M., Frantz, E., Labella, M., Hughes, Z., Fanton, M., and Snyder, D.: Nucleation of epitaxial graphene on SiC(0001). ACS Nano 4(1), 153158 (2010).CrossRefGoogle ScholarPubMed
Srivastava, N.L., He, G., Feenstra, R.M., and Fisher, P.J.: Comparison of graphene formation on C-face and Si-face SiC {0001} surfaces. Phys. Rev. B 82(23) (2010).Google Scholar
Srivastava, N., He, G.W., Luxmi, , Mende, P.C., Feenstra, R.M., and Sun, Y.G.: Graphene formed on SiC under various environments: Comparison of Si-face and C-face. J. Phys. D: Appl. Phys. 45(15) (2012).CrossRefGoogle Scholar
Tanaka, S., Morita, K., and Hibino, H.: Anisotropic layer-by-layer growth of graphene on vicinal SiC(0001) surfaces. Phys. Rev. B 81(4) (2010).CrossRefGoogle Scholar
Rummeli, M.H., Rocha, C.G., Ortmann, F., Ibrahim, I., Sevincli, H., Borrnert, F., Kunstmann, J., Bachmatiuk, A., Potschke, M., Shiraishi, M., Meyyappan, M., Buchner, B., Roche, S., and Cuniberti, G.: Graphene: Piecing it together. Adv. Mater. 23(39), 44714490 (2011).CrossRefGoogle ScholarPubMed
Sprinkle, M., Ruan, M., Hu, Y., Hankinson, J., Rubio-Roy, M., Zhang, B., Wu, X., Berger, C., and de Heer, W.A.: Scalable templated growth of graphene nanoribbons on SiC. Nat. Nanotechnol. 5(10), 727731 (2010).CrossRefGoogle ScholarPubMed
Cambaz, G.Z., Yushin, G.N., Gogotsi, Y., and Lutsenko, V.G.: Anisotropic etching of SiC whiskers. Nano Lett. 6(3), 548551 (2006).CrossRefGoogle ScholarPubMed
Vyshnyakova, K.L., Pereselentseva, L.N., Cambaz, Z.G., Yushin, G.N., and Gogotsi, Y.: Whiskerisation of polycrystalline SiC fibres during synthesis. Br. Ceram. Trans. 103(5), 193196 (2004).CrossRefGoogle Scholar
Erdemir, A., Kovalchenko, A., McNallan, M.J., Welz, S., Lee, A., Gogotsi, Y., and Carroll, B.: Effects of high-temperature hydrogenation treatment on sliding friction and wear behavior of carbide-derived carbon films. Surf. Coat. Technol. 188, 588593 (2004).CrossRefGoogle Scholar
Cambaz, Z.G., Yushin, G.N., Gogotsi, Y., Vyshnyakova, K.L., and Pereselentseva, L.N.: Formation of carbide-derived carbon on beta-silicon carbide whiskers. J. Am. Ceram. Soc. 89(2), 509514 (2006).CrossRefGoogle Scholar
Welz, S., Gogotsi, Y., and McNallan, M.J.: Nucleation, growth, and graphitization of diamond nanocrystals during chlorination of carbides. J. Appl. Phys. 93(7), 42074214 (2003).CrossRefGoogle Scholar
Gogotsi, Y.G., Nickel, K.G., and Kailer, A.: Phase transformations in materials studied by micro-Raman spectroscopy of indentations. Mater. Res. Innovations 1(1), 39 (1997).CrossRefGoogle Scholar
Zhuang, D. and Edgar, J.H.: Wet etching of GaN, AlN, and SiC: A review. Mater. Sci. Eng., R 48(1), 146 (2005).CrossRefGoogle Scholar
Hite, J.K., Twigg, M.E., Tedesco, J.L., Friedman, A.L., Myers-Ward, R.L., Eddy, C.R., and Gaskill, D.K.: Epitaxial graphene nucleation on C-face silicon carbide. Nano Lett. 11(3), 11901194 (2011).CrossRefGoogle ScholarPubMed
Nutt, S.: Microstructure and growth model for rice-hull derived SiC whiskers. J. Am. Ceram. Soc. 71(3), 149156 (1988).CrossRefGoogle Scholar
Cambaz, G.Z.: Formation of carbide derived carbon coatings on SiC. Ph.D. Thesis in Materials Science and Engineering, Drexel University, Philadelphia, PA, 2007.Google Scholar
Tan, P., Dimovski, S., and Gogotsi, Y.: Raman scattering of non-planar graphite: Arched edges, polyhedral crystals, whiskers and cones. Philos. Trans. R. Soc. London, Ser. A 362, 22892310 (2004).CrossRefGoogle ScholarPubMed
Ferrari, A.C., Meyer, J.C., Scardaci, V., Casiraghi, C., Lazzeri, M., Mauri, F., Piscanec, S., Jiang, D., Novoselov, K.S., Roth, S., and Geim, A.K., Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 97(18) (2006).CrossRefGoogle ScholarPubMed