Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-29T22:22:00.108Z Has data issue: false hasContentIssue false

Effect of crystallinity on the dielectric loss of sputter-deposited (Ba,Sr)TiO3 thin films in the microwave range

Published online by Cambridge University Press:  31 January 2011

Tae-Gon Kim
Affiliation:
School of Materials Science and Engineering, Seoul National University, Seoul 151–744, Korea
Jeongmin Oh
Affiliation:
School of Materials Science and Engineering, Seoul National University, Seoul 151–744, Korea
Taeho Moon
Affiliation:
School of Materials Science and Engineering, Seoul National University, Seoul 151–744, Korea
Yongjo Kim
Affiliation:
School of Materials Science and Engineering, Seoul National University, Seoul 151–744, Korea
Byungwoo Park*
Affiliation:
School of Materials Science and Engineering, Seoul National University, Seoul 151–744, Korea
Young-Taek Lee
Affiliation:
School of Electrical Engineering and Computer Science, Seoul National University, Seoul 151–744, Korea
Sangwook Nam
Affiliation:
School of Electrical Engineering and Computer Science, Seoul National University, Seoul 151–744, Korea
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

The crystallinity dependence of the microwave dielectric losses in (Ba,Sr)TiO3 thin films was investigated. The sputter-deposition temperatures were altered to vary the level of thin-film crystallinity on a Pt/Si substrate. The dielectric losses (tan δ) were measured up to 6 GHz without parasitic (stray) effects by using a circular-patch capacitor geometry and an equivalent-circuit model. The microwave dielectric losses increased from 0.0024 ± 0.0018 to 0.0102 ± 0.0017 with increasing crystallinity. These deteriorated dielectric losses showed a good correlation with the symmetry-breaking defects, as confirmed by Raman spectra at approximately 760 cm−1, inducing microscopic polar regions above the Curie temperature of the bulk (Ba0.43Sr0.57)TiO3.

Type
Articles
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Im, J., Auciello, O., Baumann, P.K., Streiffer, S.K., Kaufman, D.Y., and Krauss, A.R., Appl. Phys. Lett. 76, 625 (2000).CrossRefGoogle Scholar
2.Gim, Y., Hudson, T., Fan, Y., Kwon, C., Findikoglu, A.T., Gibbons, B.J., Park, B.H., and Jia, Q.X., Appl. Phys. Lett. 77, 1200 (2000).CrossRefGoogle Scholar
3.Padmini, P., Taylor, T.R., Lefevre, M.J., Nagra, A.S., York, R.A., and Speck, J.S., Appl. Phys. Lett. 75, 3186 (1999).CrossRefGoogle Scholar
4.Chang, W., Gilmore, C.M., Kim, W-J., Pond, J.M., Kirchoefer, S.W., Qadri, S.B., Chirsey, D.B., Horwitz, J.S., J. Appl. Phys. 87, 3044 (2000).CrossRefGoogle Scholar
5.Streiffer, S.K., Basceri, C., Parker, C.B., Lash, S.E., and Kingon, A.I., J. Appl. Phys. 86, 4565 (1999).CrossRefGoogle Scholar
6.Park, B.H., Peterson, E.J., Jia, Q.X., Lee, J., Zheng, X., Si, W., and Xi, X.X., Appl. Phys. Lett. 78, 533 (2001).CrossRefGoogle Scholar
7.Park, B.H., Gim, Y., Fan, Y., Jia, Q.X., and Lu, P., Appl. Phys. Lett. 77, 2587 (2000).CrossRefGoogle Scholar
8.Zakharchenko, I.N., Radchenko, M.G., Sapozhnikov, L.A., Sviridov, E.V., and Dudkevich, V.P., Crystallogr. Rep. 43, 131 (1998).Google Scholar
9.Kim, Y., Oh, J., Kim, T-G., and Park, B., Appl. Phys. Lett. 78, 2363 (2001); T. Kim, J. Oh, B. Park, and K.S. Hong, Appl. Phys. Lett. 76, 3043 (2000).CrossRefGoogle Scholar
10.Chang, W., Horwitz, J.S., Kim, W-J., Gilmore, C.M., Pond, J.M., Kirchoefer, S.W., Chrisey, D.B., in Materials Issues for Tunable RF and Microwave Devices, edited by Jia, Q., Miranda, F.A., Oates, D.E., and Xi, X. (Mater. Res. Soc. Symp. Proc. 603, Warrendale, PA, 2000), p. 181.Google Scholar
11.Ma, Z., Becker, A.J., Polakos, P., Huggins, H., Pastalan, J., Wu, H., Watts, K., Wong, Y.H., and Mankiewich, P., IEEE Trans. Electron Devices 45, 1811 (1998).CrossRefGoogle Scholar
12.Yuzyuk, Y.I., Alyoshin, V.A., Zakharchenko, I.N., Sviridov, E.V., Almeida, A., Chaves, M.R., Phys. Rev. B 65, 134107-1 (2002).CrossRefGoogle Scholar
13.Toulouse, J., DiAntonio, P., Vugmeister, B.E., Wang, X.M., Knauss, L.A., Phys. Rev. Lett. 68, 232 (1992).CrossRefGoogle Scholar
14.Uwe, H., Lyons, K.B., Carter, H.L., and Fleury, P.A., Phys. Rev. B 33, 6436 (1986).CrossRefGoogle Scholar
15.Raptis, C., Phys. Rev. B 38, 10007 (1988).CrossRefGoogle Scholar
16.Naik, R., Nazarko, J.J., Flattery, C.S., Venkateswaran, U.D., Naik, V.M., Mohammed, M.S., Auner, G.W., Mantese, J.V., Schubring, N.W., Micheli, A.L., and Catalan, A.B., Phys. Rev. B 61, 11367 (2000).CrossRefGoogle Scholar
17.Kuo, S-Y., Liao, W-Y., and Hsieh, W-F., Phys. Rev. B 64, 224103-1 (2001).CrossRefGoogle Scholar
18.Sirenko, A.A., Akimov, I.A., Fox, J.R., Clark, A.M., Li, H-C., Si, W., Xi, X.X., Phys. Rev. Lett. 82, 4500 (1999).CrossRefGoogle Scholar
19.McCulloch, D.G. and Prawer, S., J. Appl. Phys. 78, 3040 (1995).CrossRefGoogle Scholar
20.Bianchi, U., Kleemann, W., and Bednorz, J.G., J. Phys.: Condens. Mater 6, 1229 (1994).Google Scholar
21.Waser, R. and Smyth, D.M., in Ferroelectric Thin Films: Synthesis and Basic Properties, edited by Araujo, C. P. de, Scott, J.F., and Taylor, G.W. (Gorden and Breach, Amsterdam, The Netherlands, 1996), p. 47.Google Scholar
22.Halperin, B.I. and Varma, C.M., Phys. Rev. B 14, 4030 (1976).CrossRefGoogle Scholar
23.Hubert, C., Levy, J., Carter, A.C., Chang, W., Kiechoefer, S.W., Horwitz, J.S., and Chrisey, D.B., Appl. Phys. Lett. 71, 3353 (1997).CrossRefGoogle Scholar
24.Tenne, D.A., Clark, A.M., James, A.R., Chen, K., Xi, X.X., Appl. Phys. Lett. 79, 3836 (2001).CrossRefGoogle Scholar
25.Hubert, C. and Levy, J., Appl. Phys. Lett. 73, 3229 (1998).CrossRefGoogle Scholar
26.Tagantsev, A.K., Appl. Phys. Lett. 76, 1182 (2000).CrossRefGoogle Scholar
27.Vendik, O.G. and Platonova, L.M., Sov. Phys. Solid State 13, 1353 (1971).Google Scholar