Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-22T21:23:26.095Z Has data issue: false hasContentIssue false

Effect of cooling rate and composition on the microstructure and mechanical properties of (Ni0.92Zr0.08)100−xAlx (0 ≤ x ≤ 4 at.%) ultrafine eutectic composites

Published online by Cambridge University Press:  04 March 2019

Anushree Dutta
Affiliation:
Department of Metallurgical and Materials Engineering, Indian Institute of Technology Kharagpur, West Bengal 721302, India
Parijat P. Jana
Affiliation:
Department of Metallurgical and Materials Engineering, Indian Institute of Technology Kharagpur, West Bengal 721302, India
Jayanta Das*
Affiliation:
Department of Metallurgical and Materials Engineering, Indian Institute of Technology Kharagpur, West Bengal 721302, India
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

The effect of cooling rate on the microstructure evolution and the mechanical properties of ingots and rods of 2–5 mm diameter of (Ni0.92Zr0.08)100−xAlx (0 ≤ x ≤ 4 at.%) ultrafine eutectic composites have been investigated. The microstructure of the composites is comprised of micrometer size γ-Ni dendrites embedded in a nano/-ultrafine lamellar fcc γ-Ni and Ni5Zr matrix. The evolution of the microstructure at a wide range of cooling rates (10–104 K/s) has been analyzed in respect of volume fraction of the phases, lamellar spacing, and secondary dendritic arm spacing. All these composites exhibit high hardness up to 4.6 GPa and yield strength up to 1.6 GPa with large compressive plasticity up to 22% at room temperature. The effect of cooling rates on the strength and hardness, and the plasticity of the nanolamellar composites with wide range of alloy composition have been correlated.

Type
Article
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Elliott, R.: Eutectic solidification. Mater. Sci. Eng. 65, 85 (1984).CrossRefGoogle Scholar
Park, J.M., Kim, K.B., Kim, W.T., Lee, M.H., Eckert, J., and Kim, D.H.: High strength ultrafine eutectic Fe–Nb–Al composites with enhanced plasticity. Intermetallics 16, 642 (2008).CrossRefGoogle Scholar
Park, J.M., Kim, T.E., Sohn, S.W., Kim, D.H., Kim, K.B., Kim, W.T., and Eckert, J.: High strength Ni–Zr binary ultrafine eutectic-dendrite composite with large plastic deformability. Appl. Phys. Lett. 93, 031913 (2008).CrossRefGoogle Scholar
Das, J., Theissmann, R., Löser, W., and Eckert, J.: Effect of Sn on microstructure and mechanical properties of Ti–Fe–(Sn) ultrafine eutectic composites. J. Mater. Res. 25, 943 (2010).CrossRefGoogle Scholar
Zhang, L.C., Das, J., Lu, H.B., Duhamel, C., Calin, M., and Eckert, J.: High strength Ti–Fe–Sn ultrafine composites with large plasticity. Scr. Mater. 57, 101 (2007).CrossRefGoogle Scholar
Maity, T., Roy, B., and Das, J.: Mechanism of lamellae deformation and phase rearrangement in ultrafine β-Ti/FeTi eutectic composites. Acta Mater. 97, 170 (2015).CrossRefGoogle Scholar
Barbier, D., Huang, M.X., and Bouaziz, O.: A novel eutectic Fe–15 wt% Ti alloy with an ultrafine lamellar structure for high temperature applications. Intermetallics 35, 41 (2013).CrossRefGoogle Scholar
He, G., Eckert, J., Löser, W., and Schultz, L.: Novel Ti-base nanostructure-dendrite composite with enhanced plasticity. Nat. Mater. 2, 33 (2003).CrossRefGoogle ScholarPubMed
Louzguine, D.V., Kato, H., Louzguina, L.V., and Inoue, A.: High-strength binary Ti–Fe bulk alloys with enhanced ductility. J. Mater. Res. 19, 3600 (2004).CrossRefGoogle Scholar
Eckert, J., Das, J., Pauly, S., and Duhamel, C.: Mechanical properties of bulk metallic glasses and composites. J. Mater. Res. 22, 285 (2007).CrossRefGoogle Scholar
Pint, B.A., DiStefano, J.R., and Wright, I.G.: Oxidation resistance: One barrier to moving beyond Ni-base superalloys. Mater. Sci. Eng., A 415, 255 (2006).CrossRefGoogle Scholar
Maity, T. and Das, J.: High strength Ni–Zr–(Al) nanoeutectic composites with large plasticity. Intermetallics 63, 51 (2015).CrossRefGoogle Scholar
Maity, T., Singh, A., Dutta, A., and Das, J.: Microscopic mechanism on the evolution of plasticity in nanolamellar γ-Ni/Ni5Zr eutectic composites. Mater. Sci. Eng., A 666, 72 (2016).CrossRefGoogle Scholar
Kim, J.T., Hong, S.H., Park, H.J., Kim, Y.S., Park, G.H., Park, J-Y., Lee, N., Seo, Y., Park, J.M., and Kim, K.B.: Improving the plasticity and strength of Fe–Nb–B ultrafine eutectic composite. Mater. Des. 76, 190 (2015).CrossRefGoogle Scholar
Kim, J.T., Lee, S.W., Hong, S.H., Park, H.J., Park, J-Y., Lee, N., Seo, Y., Wang, W-M., Park, J.M., and Kim, K.B.: Understanding the relationship between microstructure and mechanical properties of Al–Cu–Si ultrafine eutectic composites. Mater. Des. 92, 1038 (2016).CrossRefGoogle Scholar
Kim, J.T., Hong, S.H., Park, H.J., Kim, Y.S., Suh, J.Y., Lee, J.K., Park, J.M., Maity, T., Eckert, J., and Kim, K.B.: Deformation mechanisms to ameliorate the mechanical properties of novel TRIP/TWIP Co–Cr–Mo–(Cu) ultrafine eutectic alloys. Sci. Rep. 7, 39959 (2017).CrossRefGoogle ScholarPubMed
Lee, S.W., Kim, J.T., Hong, S.H., Park, H.J., Park, J-Y., Lee, N.S., Seo, Y., Suh, J.Y., Eckert, J., Kim, D.H., Park, J.M., and Kim, K.B.: Micro-to-nano-scale deformation mechanisms of a bimodal ultrafine eutectic composite. Sci. Rep. 4, 6500 (2014).CrossRefGoogle ScholarPubMed
Das, J., Güth, A., Klauß, H.J., Mickel, C., Löser, W., Eckert, J., Roy, S.K., and Schultz, L.: Effect of casting conditions on microstructure and mechanical properties of high-strength Zr73.5Nb9Cu7Ni1Al9.5 in situ composites. Scr. Mater. 49, 1189 (2003).CrossRefGoogle Scholar
Das, J., Pauly, S., Duhamel, C., Wei, B.C., and Eckert, J.: Microstructure and mechanical properties of slowly cooled Cu47.5Zr47.5Al5. J. Mater. Res. 22, 326 (2007).CrossRefGoogle Scholar
Das, J., Roy, S.K., Löser, W., Eckert, J., and Schultz, L.: Novel in situ nanostructure-dendrite composites in Zr-base multicomponent alloy system. Mater. Manuf. Processes 19, 423 (2004).CrossRefGoogle Scholar
Löser, W., Das, J., Güth, A., Klauß, H-J., Mickel, C., Kühn, U., Eckert, J., Roy, S., and Schultz, L.: Effect of casting conditions on dendrite-amorphous/nanocrystalline Zr–Nb–Cu–Ni–Al in situ composites. Intermetallics 12, 1153 (2004).CrossRefGoogle Scholar
Chadwick, G.A.: Yield poixt analyses in eutectic alloys. Acta Metall. 24, 1137 (1976).CrossRefGoogle Scholar
Ghosh, G.: Thermodynamics and kinetics of stable and metastable phases in the Ni–Zr system. J. Mater. Res. 9, 598 (1994).CrossRefGoogle Scholar
Miura, S., Unno, H., Yamazaki, T., Takizawa, S., and Mohri, T.: Reinvestigation of Ni-solid solution/liquid equilibria in Ni–Al binary and Ni–Al–Zr ternary systems. J. Phase Equilib. 22, 457 (2001).CrossRefGoogle Scholar
Luo, Y.R.: Comprehensive Handbook of Chemical Bond Energies, 1st ed. (CRC Press, Taylor & Francis Group, Florida, 2007); pp. 903906.CrossRefGoogle Scholar
Bouchard, D. and Kirkaldy, J.S.: Prediction of dendrite arm spacings in unsteady- and steady-state heat flow of unidirectionally solidified binary alloys. Metall. Mater. Trans. B 28, 651 (1997).CrossRefGoogle Scholar
Osorio, W.R., Goulart, P.R., Santos, G.A., Neto, C.M., and Garcia, A.: Effect of dendritic arm spacing on mechanical properties and corrosion resistance of Al 9 wt% Si and Zn 27 wt% Al alloys. Metall. Mater. Trans. A 37, 2525 (2006).CrossRefGoogle Scholar
Kurz, W. and Fisher, D.J.: Fundamental of Solidification, 3rd ed. (Trans Tech Publications, Switzerland, 1989); pp. 108111.Google Scholar
Jackson, K.A. and Hunt, J.D.: Lamellar and rod eutectic growth. Trans. Metall. Soc. AIME 236, 1129 (1966).Google Scholar
Srivastava, R.M., Eckert, J., Löser, W., Dhindaw, B.K., and Schultz, L.: Cooling rate evaluation for bulk amorphous alloys from eutectic microstructures in casting processes. Mater. Trans. 43, 1670 (2002).CrossRefGoogle Scholar
Caram, R. and Milenkovic, S.: Microstructure of Ni–Ni3Si eutectic alloy produced by directional solidification. J. Cryst. Growth 198–199, 844 (1999).CrossRefGoogle Scholar
Kaya, H., Boyuk, U., Cadirli, E., and Marasli, N.: Unidirectional solidification of aluminium–nickel eutectic alloy. Met. Mater. 48, 291 (2010).Google Scholar
Stull, D.R. and Sinke, G.C.: Thermodynamic properties of the elements. R.F. Gould (Ed.) In Advances in Chemistry (American Chemical Society, Washington, DC, 1956); pp. 37225.Google Scholar
Gaskell, D.R.: Introduction to the Thermodynamics of Materials, 4th ed. (Taylor & Francis Group, New York, 2003); pp. 705706.Google Scholar
Lee, H.G.: Materials Thermodynamics with Emphasis on Chemical Approach (World Scientific Publishing Co., Pte., Ltd., Singapore, Malaysia, 2012); p. 433.CrossRefGoogle Scholar
Porter, D.A., Easterling, K.E., and Sherif, M.Y.: Phase Transformation in Metals and Alloys, 3rd ed. (CRC Press, Taylor & Francis Group, Florida, 2009); pp. 212220.Google Scholar
Zhou, S.H., Wang, Y., Chen, L-Q., Liu, Z-K., and Napolitano, R.E.: Solution-based thermodynamic modelling of the Ni–Al–Mo system using first-principles calculations. Calphad 46, 124 (2014).CrossRefGoogle Scholar
Bratberg, J., Mao, H., Kjellqvist, L., Engström, A., Mason, P., and Chen, Q.: The development and validation of a new thermodynamic database for Ni-based alloys. Superalloys 2012, 803 (2012).CrossRefGoogle Scholar
Callister, W.D. and Rethwisch, D.G. Jr.: Materials Science and Engineering: An Introduction, 2nd ed. (Wiley India Pvt., Ltd., New Delhi, India, 2014).Google Scholar
Glezer, A.M., Kozlov, E.V., Koneva, N.A., Popova, N.A., and Kurzina, I.A.: Plastic Deformation of Nanostructured Materials (CRC Press, Taylor & Francis Group, Boca Raton, Florida, 2017); p. 83.CrossRefGoogle Scholar