Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-09T19:36:55.087Z Has data issue: false hasContentIssue false

Effect of CeO2 on the reaction kinetics for the formation of Sr0.5Ba0.5CexNb2O6+δ

Published online by Cambridge University Press:  31 January 2011

Jyh-Tzong Shiue
Affiliation:
Department of Materials Science and Engineering, National Cheng Kung University, Tainan 701, Taiwan
Tsang-Tse Fang
Affiliation:
Department of Materials Science and Engineering, National Cheng Kung University, Tainan 701, Taiwan
Get access

Abstract

The solid-state reaction of SrNb2O6, BaNb2O6, and CeO2 to form Sr0.5Ba0.5CexNb2O6+δ at different temperatures and heating rates was investigated. A nonisothermal kinetic empirical model was used to evaluate the activation energy and rate constant of Sr0.5Ba0.5CexNb2O6+δ. The values of the activation energy evaluated from the slopes are 762, 800, and 844 kJ/mol, respectively, for S50, 1CeS50, and 2CeS50, which increase with the increase in Ce doping. The order of reaction was found to decrease with the increase of the Ce doping. A kinetic equation was developed based on the parameters evaluated from the nonisothermal reaction model, which was successfully used to predict the isothermal reaction of Ce-doped strontium barium niobate.

Type
Articles
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Jamieson, P.B., Abrahams, S.C., and Bernstein, J.L., J. Chem. Phys. 48, 5048 (1968).Google Scholar
2.Venturini, E.L., Spencer, E.G., Lenzo, P.V., and Ballman, A.A., J. Appl. Phys. 39, 343 (1968).Google Scholar
3.Glass, A.M., J. Appl. Phys. 40, 4699 (1969).Google Scholar
4.Lenzo, P.V., Spencer, E.G., and Ballman, A.A., Appl. Phys. Lett. 11, 23 (1967).CrossRefGoogle Scholar
5.Giuliano, C.R., Phys. Today 34, 27 (1981).CrossRefGoogle Scholar
6.Feinberg, J., Phys. Today 41, 46 (1988).CrossRefGoogle Scholar
7.Ewbank, M.D., Neugaonkar, R.R., Cory, W.K., and Feinberg, J., J. Appl. Phys. 62, 374 (1987).Google Scholar
8.Parish, T., BYTE 15, 283 (1990).Google Scholar
9.Bogodaev, N.V., Eliseev, V.V., Ivleva, L.I., Korshunov, A.S., Orlov, S.S., Polozkov, N.M., and Zozulya, A.A., J. Opt. Soc. Am. B 9, 1493 (1992).Google Scholar
10.Kahmann, F., Pankrath, R., and Rupp, R.A., Opt. Commun. 107, 6 (1994).CrossRefGoogle Scholar
11.Buse, K., Pankrath, R., and Kratzig, E., Opt. Lett. 19, 260 (1994).Google Scholar
12.Megumi, K., Kozuka, H., Kobayashi, M., and Furuhata, Y., Appl. Phys. Lett. 30, 631 (1977).Google Scholar
13.Nagata, K., Yamamoto, Y., Igarashi, H., and Okazaki, K., Ferroelectrics 38, 853 (1981).CrossRefGoogle Scholar
14.Lee, S.I. and Choo, W.K., Ferroelectrics 87, 209 (1988).CrossRefGoogle Scholar
15.VanDamme, N.S., Sutherland, A.E., Jones, L., Bridger, K., and Winzer, S.R., J. Am. Ceram. Soc. 74, 1785 (1991).Google Scholar
16.Lee, Wen-Jiung and Fang, Tsang-Tse, J. Am. Ceram. Soc. 81, 1019 (1998).Google Scholar
17.Fang, T-T., Wu, N-T., and Shiau, F-S., J. Mater. Sci. Lett. 13, 1746 (1994).Google Scholar
18.Lee, W-J. and Fang, T-T., J. Am. Ceram. Soc. 81, 193 (1998).Google Scholar
19.Cullity, B.D., Elements of X-ray Diffraction, 2nd ed. (Addison-Wesley Publishing Company, Inc, Reading, MA, 1978), pp. 415, 417.Google Scholar
20.Carrol, B. and Manche, E.P., Thermochim. Acta 3, 449 (1972).Google Scholar
21.Giles, N.C., Wolford, J.L., Edwards, G.J., and Uhrin, R., J. Appl. Phys. 77, 976 (1995).CrossRefGoogle Scholar
22.Shiue, J-T. and Fang, T-T., J. Eur. Ceram. Soc. 22, 1705 (2002).CrossRefGoogle Scholar
23.Shiue, J-T. and Fang, T-T., manuscript accepted by J. Am. Ceram. Soc.Google Scholar