Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-23T12:35:59.923Z Has data issue: false hasContentIssue false

Effect of A-site substitution on electrical conductivity and microstructure of YAlO3

Published online by Cambridge University Press:  03 July 2012

Ramya Hariharan
Affiliation:
Department of Metallurgical Engineering and Materials Science, Indian Institute of Technology, Bombay, Powai, Mumbai 400 076, India
Prakash Gopalan*
Affiliation:
Department of Metallurgical Engineering and Materials Science, Indian Institute of Technology, Bombay, Powai, Mumbai 400 076, India
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

A systematic evaluation of the electrical conductivity of Sr-substituted YAlO3 system has been performed. A comparison between the Ca- and Sr-doped YAlO3 systems is reported. The samples have been synthesized by citrate gel route, and the electrical conductivity measurements have been conducted in air in the 300–800 °C temperature range. The influence of phase development of the compositions on the total conductivity has been investigated using the x-ray diffraction technique. Also, the effect of microstructure and composition of the phases evolved on the electrical conductivity has been analyzed using scanning electron microscopy and energy dispersive spectrum techniques.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Owens, B.B.: Solid state electrolytes: Overview of materials and applications during the last third of the twentieth century. J. Power Sources 90(1), 2 (2000).CrossRefGoogle Scholar
2.Stambouli, A.B. and Traversa, E.: Solid oxide fuel cells (SOFCs): A review of an environmentally clean and efficient source of energy. Renewable Sustainable Energy Rev. 6(5), 433 (2002).CrossRefGoogle Scholar
3.Yamamoto, O.: Solid oxide fuel cells: Fundamental aspects and prospects. Electrochim. Acta 45(15–16), 2423 (2000).CrossRefGoogle Scholar
4.Steele, B.C.H. and Heinzel, A.: Materials for fuel-cell technologies. Nature 414, 345 (2001).CrossRefGoogle ScholarPubMed
5.Kharton, V.V., Marques, F.M.B., and Atkinson, A.: Transport properties of solid oxide electrolyte ceramics: A brief review. Solid State Ionics 174(1–4), 135 (2004).CrossRefGoogle Scholar
6.Kilner, J.A.: Fast anion transport in solids. Solid State Ionics 8(3), 201 (1983).CrossRefGoogle Scholar
7.Nakayama, S. and Sakamoto, M.: Electrical properties of new type high oxide ionic conductor RE10Si6O27 (RE = La, Pr, Nd, Sm, Gd, Dy). J. Eur. Ceram. Soc. 18(10), 1413 (1998).CrossRefGoogle Scholar
8.Feng, M. and Goodenough, J.B.: A superior oxide-ion electrolyte. Eur. J. Solid State Inorg. Chem. 31(8–9), 663 (1994).Google Scholar
9.Huang, K. and Goodenough, J.B.: A solid oxide fuel cell based on Sr- and Mg-doped LaGaO3 electrolyte: The role of a rare-earth oxide buffer. J. Alloys Compd. 303304, 454 (2000).CrossRefGoogle Scholar
10.Fergus, J.W.: Electrolytes for solid oxide fuel cells. J. Power Sources 162(1), 30 (2006).CrossRefGoogle Scholar
11.Djurado, E. and Labeau, M.: Second phases in doped lanthanum gallate perovskites. J. Eur. Ceram. Soc. 18(10), 1397 (1998).CrossRefGoogle Scholar
12.Sammes, N.M., Keppeler, F.M., Näfe, H., and Aldinger, F.: Mechanical properties of solid-synthesized strontium- and magnesium-doped lanthanum gallate. J. Am. Ceram. Soc. 81, 3104 (1998).CrossRefGoogle Scholar
13.Yamaji, K., Negishi, H., Horita, T., Sakai, N., and Yokokawa, H.: Vaporization process of Ga from doped LaGaO3 electrolytes in reducing atmospheres. Solid State Ionics 135, 389 (2000).CrossRefGoogle Scholar
14.Geller, S. and Bala, V.B.: Crystallographic studies of perovskite-like compounds. II. Rare earth alluminates. Acta Crystallogr. 9, 1019 (1956).CrossRefGoogle Scholar
15.Lybye, D., Poulsen, F.W., and Mogensen, M.: Conductivity of A- and B-site doped LaAlO3, LaGaO3, LaScO3 and LaInO3 perovskites. Solid State Ionics 128(1), 91 (2000).CrossRefGoogle Scholar
16.Alcock, C.B., Fergus, J.W., and Wang, L.: The electrolytic properties of LaYO3 and LaAlO3 doped with alkaline-earth oxides. Solid State Ionics 51(3–4), 291 (1992).CrossRefGoogle Scholar
17.Kilner, J.A., Barrow, P., Brook, R.J., and Norgett, M.J.: Electrolyte for the high temperature fuel cell; experimental and theoretical studies of the perovskite LaAlO3. J. Power Sources 3, 67 (1978).CrossRefGoogle Scholar
18.Ishihara, T., Matsuda, H., Mizuhara, Y., and Takita, Y.: Improved oxygen ion conductivity of NdAlO3 perovskite-type oxide by doping with Ga. Solid State Ionics 7071(1), 234 (1994).CrossRefGoogle Scholar
19.Tsuji, T., Ohashi, Y., and Yamamura, Y.: Effect of ionic radius on electrical conductivity of doped SmAlO3 perovskite oxide. Solid State Ionics 154155, 541 (2002).CrossRefGoogle Scholar
20.Sinha, A., Sharma, B.P., and Gopalan, P.: Development of novel perovskite based oxide ion conductor. Electrochim. Acta 51(7), 1184 (2006).CrossRefGoogle Scholar
21.Medraj, M., Hammond, R., Parvez, M.A., Drew, R.A.L., and Thompson, W.T.: High temperature neutron diffraction study of the Al2O3-Y2O3 system. J. Eur. Ceram. Soc. 26(16), 3515 (2006).CrossRefGoogle Scholar
22.Yasuda, H., Ohnaka, I., Mizutani, Y., and Waku, Y.: Selection of eutectic systems in Al2O3Y2O3 ceramics. Sci. Technol. Adv. Mater. 2, 67 (2001).CrossRefGoogle Scholar
23.Hariharan, R., Venkatasubramanian, A., and Gopalan, P.: Solid-state synthesis and characterization of Ca-substituted YAlO3 as electrolyte for solid oxide fuel cells. J. Solid State Electrochem. 14, 1657 (2010).CrossRefGoogle Scholar
24.Hariharan, R. and Gopalan, P.: Chemical synthesis and characterization of Ca-substituted YAlO3 as electrolyte for solid oxide fuel cells. J. Alloys Compd. 496, 528 (2010).CrossRefGoogle Scholar
25.Anderson, P.S., Mather, G.C., Marques, F.M.B., Sinclair, D.C., and West, A.R.: Synthesis and characterisation of La0.95Sr0.05GaO3-σ, La0.95Sr0.05AlO3-σ and Y0.95Sr0.05AlO3-σ. J. Eur. Ceram. Soc. 19, 1665 (1999).CrossRefGoogle Scholar
26.Diehl, R. and Brandt, G.: Crystal structure refinement of YAlO3, a promising laser material. Mater. Res. Bull. 10, 85 (1975).CrossRefGoogle Scholar
27.Chen, J., Zhao, G., Cao, D., Dong, Q., Ding, Y., and Zhou, S.: Computer simulation of intrinsic defects in YAlO3 single crystal. Physica B 404(20), 3405 (2009).CrossRefGoogle Scholar
28.Stevenson, J.W., Armstrong, T.R., McGready, D.E., Pederson, L.R., and Weber, W.J.: Processing and electrical Properties of alkaline earth-doped lanthanum gallate. J. Electrochem. Soc. 144, 3613 (1997).CrossRefGoogle Scholar
29.Nguyen, T.Y., Dokiya, M., Wang, S., Tagawa, H., and Hashimoto, T.: The effect of oxygen vacancy on the oxide ion mobility in LaAlO3-based oxide. Solid State Ionics 130, 229 (2000).CrossRefGoogle Scholar
30.Shannon, R.D.: Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr., Sect. A: Found. Crystallogr. 32(5), 751 (1976).CrossRefGoogle Scholar
31.Bauerle, J.B.: Study of solid electrolyte polarization by a complex admittance method. J. Phys. Chem. Solids 30, 2657 (1969).CrossRefGoogle Scholar