Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-22T22:36:22.589Z Has data issue: false hasContentIssue false

Effect of addition of molybdenum or niobium on creep-rupture properties of Fe3Al

Published online by Cambridge University Press:  31 January 2011

C.G. McKamey
Affiliation:
Metals and Ceramics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6117
P.J. Maziasz
Affiliation:
Metals and Ceramics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6117
J.W. Jones
Affiliation:
Metals and Ceramics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6117
Get access

Abstract

Recent alloy development efforts have shown that Fe3Al-based alloys can have room temperature tensile ductilities of 10–20% and yield strengths of 500 MPa at temperatures to 600 °C. These property improvements are important for enabling the use of iron-aluminides for structural applications that require their excellent corrosion resistance. New data are presented here from creep-rupture studies on Fe3Al and on Fe3Al-based alloys containing molybdenum or niobium plus zirconium. Binary Fe3Al alloys have low creep resistance, but the addition of 2 at. % Mo or 1% Nb plus 0.1% Zr increases the creep life and reduces the minimum creep rate, with the niobium-containing alloy being the strongest. The improvement in creep life is the result of a combination of factors which include grain boundary strengthening, resistance to dynamic recrystallization during stressing, precipitation strengthening, and changes in the formation and mobility of the dislocation network. Correlation of optical, scanning electron, and transmission electron microscopy data suggests that the intergranular creep failure found in Fe3Al after creep testing at 550–650 °C is related to weak high-angle grain boundaries and to formation of subgrain boundary arrays, which reduce the ability of dislocations to glide or multiply to produce matrix plasticity. The addition of niobium/zirconium results in solid solution strengthening effects, as well as the formation of fine MC precipitates (a small amount of carbon is present as a contaminant from the casting process) which strengthen both the matrix and grain boundaries. The result relative to the binary alloy is increased creep-rupture strength and life coupled with a change to a ductile-dimple transgranular failure mode. This suggests that the mechanisms that cause failure during creep can be controlled by macro- and microalloying effects.

Type
Articles
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.DeVan, J. H., Hsu, H. S., and Howell, M., SulfidationlOxidation Properties of Iron-Based Alloys Containing Niobium and Aluminum, ORNL/TM-11176 (Oak Ridge National Laboratory, Oak Ridge, TN, May 1989).Google Scholar
2.McKamey, C. G., DeVan, J. H., Tbrtorelli, P. F., and Sikka, V. K., J. Mater. Res. 6, 1779 (1991).CrossRefGoogle Scholar
3.Liu, C. T., Lee, E. H., and McKamey, C. G., Scripta Metall. 23, 875 (1989).CrossRefGoogle Scholar
4.Liu, C. T., McKamey, C. G., and Lee, E. H., Scripta Metall. 24, 385 (1990).CrossRefGoogle Scholar
5.Liu, C. T. and McKamey, C. G., in High Temperature Aluminides and Intermetallics, edited by Whang, S. H., Liu, C. T., Pope, D. P., and Stiegler, J. O. (TMS, Warrendale, PA, 1990), p. 133.Google Scholar
6.McKamey, C. G. and Liu, C. T., to be published in Proceedings of ADVMAT/91 Environmental Effects on Advanced Materials Symposium (NACE, 1991).Google Scholar
7.Sikka, V. K., McKamey, C. G., Howell, C. R., and Baldwin, R. H., Fabrication and Mechanical Properties of FesAl-Based Aluminides, ORNL/TM-11465 (Oak Ridge National Laboratory, Oak Ridge, TN, March 1990).CrossRefGoogle Scholar
8.McKamey, C. G. and Liu, C. T., Scripta Metall. 24, 2119 (1990).CrossRefGoogle Scholar
9.McKamey, C. G., Proceedings of the Fourth Annual Conference on Fossil Energy Materials, ORNL/FMP-90/1 (Oak Ridge National Laboratory, Oak Ridge, TN, August 1990), p. 197.Google Scholar
10.McKamey, C. G., Liu, C. T., David, S. A., Horton, J. A., Pierce, D. H., and Campbell, J. J., Development of Iron Aluminides for Gasification Systems, ORNL/TM-10793 (Oak Ridge National Laboratory, Oak Ridge, TN, July 1988).Google Scholar
11.Garofalo, F., Fundamentals of Creep and Creep-Rupture in Metals (The Macmillan Co., New York, 1965).Google Scholar
12.Sherby, O. D. and Burke, P. M., Prog. Mater. Sci. 13, 325 (1968).CrossRefGoogle Scholar
13.Stoloff, N. S. and Davies, R. G., Prog. Mater. Sci. 13, 1 (1966).CrossRefGoogle Scholar
14.Strutt, P. R. and Dodd, R. A., in Ordered Alloys: Structural Applications and Physical Metallurgy, edited by Kear, B. H., Sims, C. T., Stoloff, N. S., and Westbrook, J. H. (Claitor's Pub. Div., Baton Rouge, LA, 1970), p. 475.Google Scholar
15.Jung, I., Rudy, M., and Sauthoff, G., in High Temperature Ordered Intermetallic Alloys II, edited by Stoloff, N. S., Koch, C. C., Liu, C. T., and Izumi, O. (Mater. Res. Soc. Symp. Proc. 81, Pittsburgh, PA, 1987), p. 263.Google Scholar
16.Stoloff, N. S., in High Temperature Ordered Intermetallic Alloys, edited by Koch, C. C., Liu, C. T., and Stoloff, N. S. (Mater. Res. Soc. Symp. Proc. 39, Pittsburgh, PA, 1985), p. 3.Google Scholar
17.Herman, M. and Brown, N., Trans. AIME 206, 604 (1956).Google Scholar
18.Kornilov, I.I. and Panasyuk, A. O., Invest. Physica-Chemical Analysis 27, 164 (1956).Google Scholar
19.Lawley, A., Coll, J. A., and Cahn, R. W., TMS AIME 218, 166 (1960).Google Scholar
20.Strutt, P. R. and Kear, B. H., in High Temperature Ordered Intermetallic Alloys, edited by Koch, C. C., Liu, C. T., and Stoloff, N. S. (Mater. Res. Soc. Symp. Proc. 39, Pittsburgh, PA, 1985), p. 279.Google Scholar
21.Schneibel, J. H. and Horton, J. A., J. Mater. Res. 3, 651 (1988).CrossRefGoogle Scholar
22.Hemker, K. J. and Nix, W. D., in High Temperature Ordered Intermetallic Alloys III, edited by Liu, C. T., Taub, A. I., Stoloff, N. S., and Koch, C. C. (Mater. Res. Soc. Symp. Proc. 133, Pittsburgh, PA, 1989), p. 481.Google Scholar
23.Schneibel, J. H. and Porter, W. D., J. Mater. Res. 3, 403 (1988).CrossRefGoogle Scholar
24.Schenibel, J. H. and Martinez, L., in High Temperature Ordered Intermetallic Alloys II, edited by Stoloff, N. S., Koch, C. C., Liu, C. T., and Izumi, O. (Mater. Res. Soc. Symp. Proc. 81, Pittsburgh, PA, 1987), p. 297.Google Scholar
25.Schneibel, J. H., Petersen, G. F., and Liu, C. T., J. Mater. Res. 1, 68 (1986).CrossRefGoogle Scholar
26.Nicholls, J. R. and Rawings, R. D., J. Mater. Sci. 12, 2456 (1977).CrossRefGoogle Scholar
27.Jung, I. and Sauthoff, G., Z. Metall. 80, 484 (1989).Google Scholar
28.Rudy, M. and Sauthoff, G., Mater. Sci. Eng. 81, 525 (1986).CrossRefGoogle Scholar
29.Rudy, M. and Sauthoff, G., in High Temperature Ordered Intermetallic Alloys, edited by Koch, C. C., Liu, C. T., and Stoloff, N. S. (Mater. Res. Soc. Symp. Proc. 39, Pittsburgh, PA, 1985), p. 327.Google Scholar
30.Strutt, P. R., Polvani, R. S., and Ingram, J. C., Metall. Trans. 7A, 23 (1976).CrossRefGoogle Scholar
31.Polvani, R. S., Tzeng, W-S., and Strutt, P. R., Metall. Trans. 7A, 33 (1976).CrossRefGoogle Scholar
32.Davies, R. G., TMS AIME 227, 22 (1963).Google Scholar
33.Whittenberger, J. D., Mater. Sci. Eng. 57, 77 (1983).CrossRefGoogle Scholar
34.Whittenberger, J. D., Mater. Sci. Eng. 77, 103 (1986).CrossRefGoogle Scholar
35.Maziasz, P. J. and McKamey, C. G., to be published in Proceedings of International Conference on High-Temperature Aluminides and Intermetallics, J. Mater. Sci. Eng., 1992.Google Scholar
36.McKamey, C. G., Liu, C. T., Cathcart, J. V., David, S. A., and Lee, E. H., Evaluation of Mechanical and Metallurgical Properties of Fe3Al-Based Aluminides, ORNL/TM-10125 (Oak Ridge National Laboratory, Oak Ridge, TN, September 1986).Google Scholar
37.Hubbard, C. R. and Cavin, O. B., Oak Ridge National Laboratory, unpublished results.Google Scholar
38.Raghunathan, V. S. and Sharma, B. D., Philos. Mag. A 43, 427 (1981).CrossRefGoogle Scholar
39.Akimova, I. A., Mironov, V. M., and Pokoyev, A. V., Phys. Met. Metall. 56, 175 (1983).Google Scholar
40.Birchenall, C. E. and Mehl, R. F., Trans. AIME 188, 144 (1950).Google Scholar
41.James, D. W. and Leak, G. M., Philos. Mag. 14, 701 (1966).CrossRefGoogle Scholar
42.Vignes, A., Philibert, J., Badia, N., et al, Diffusion Data 3, 269 (1969).Google Scholar
43.Akuezue, H. C. and Whittle, D. P., Met. Sci. 17, 27 (1983)CrossRefGoogle Scholar
44.Marcinkowski, M. J. and Brown, N., J. Appl. Phys. 33, 537 (1962).CrossRefGoogle Scholar
45.Saburi, T., Yamauchi, I., and Nenno, S., J. Phys. Soc. Jpn. 32, 694 (1972)CrossRefGoogle Scholar
46.Marcinkowski, M. J. and Brown, N., Acta Metall. 9, 764 (1961).CrossRefGoogle Scholar
47.McKamey, C. G. and Horton, J. A., Metall. Trans. 20A, 751 (1989).CrossRefGoogle Scholar
48.Sherby, O. D. and Lytton, J. L., Trans. AIME 206, 928 (1956).Google Scholar
49.Dimiduk, D. M., Mendiratta, M. G., Banerjee, D., and Lipsitt, H. A., Acta Metall. 36, 2947 (1988).CrossRefGoogle Scholar
50.Holladay, J. W., Review of Developments in Iron-Aluminum-Bas Alloys, DMIC Memo 82 (Defense Metals Information Center, Battelle Memorial Institute, Columbus, OH, January 30, 1961).Google Scholar