Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-24T13:02:40.577Z Has data issue: false hasContentIssue false

Domain structure of epitaxial PbTiO3 films grown on vicinal (001) SrTiO3

Published online by Cambridge University Press:  31 January 2011

C. D. Theis
Affiliation:
Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802-5005
D. G. Schlom
Affiliation:
Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802-5005
Get access

Abstract

Epitaxial PbTiO3 films have been grown on vicinal (001) SrTiO3 substrates by pulsed laser deposition. Vicinal SrTiO3 substrates with misorientations up to 9° from (001) were used, and the influence of the direction of misorientation on the resulting domain structure was studied. 4-circle x-ray diffraction analysis indicates that thin (40 nm) PbTiO3 films are completely c-axis oriented [rocking curve full-width-at-half-maximum (FWHM) of 0.25° for the 002 reflection] and that thicker films (∼ 200 nm) contain mixed a-axis and c-axis PbTiO3 domains due to twinning along {011} planes. The [100] axis of the a-axis domains is misoriented by 2.1° to 3.3° toward 〈100〉 substrate directions with respect to the substrate normal. In contrast to growth on well-oriented (001) SrTiO3 surfaces where the four equivalent tilts of the [100] axis of the a-axis domains are equally likely, on vicinal SrTiO3 the a-axis domains are preferentially oriented in an uphill direction with respect to the crystallographic miscut.

Type
Articles
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Scott, J. F. and Paz de Araujo, D. A., Science 246, 1400 (1989).CrossRefGoogle Scholar
2.Seifert, A., Lange, F. F., and Speck, J. S., J. Mater. Res. 10, 680 (1995).CrossRefGoogle Scholar
3.Iijima, K., Ueda, I., and Kugimiya, K., Jpn. J. Appl. Phys. 30, 2149 (1991).CrossRefGoogle Scholar
4.Gao, Y., Bai, G., Merkle, K. L., Shi, Y., Chang, H. L. M., Shen, Z., and Lam, D. J., J. Mater. Res. 8, 145 (1993).CrossRefGoogle Scholar
5.Bai, G. R., Chang, H. L. M., Foster, C. M., Shen, Z., and Lam, D. J., J. Mater. Res. 9, 156 (1994).CrossRefGoogle Scholar
6.Chen, Y-F., Yu, T., Chen, J-X., Shun, L., Li, P., and Ming, N-B., Appl. Phys. Lett. 66, 148 (1995).CrossRefGoogle Scholar
7.Foster, C. M., Li, Z., Buckett, M., Miller, D., Baldo, P. M., Rehn, L. E., Bai, G. R., Guo, D., You, H., and Merkle, K. L., J. Appl. Phys. 78, 2607 (1995).CrossRefGoogle Scholar
8.Tabata, H., Murata, O., Kawai, T., Kawai, S., and Okuyama, M., Appl. Phys. Lett. 64, 428 (1994).CrossRefGoogle Scholar
9.Hsu, W-Y. and Raj, R., Appl. Phys. Lett. 67, 792 (1995).CrossRefGoogle Scholar
10.Theis, C. D. and Schlom, D. G., in Epitaxial Oxide Thin Films II, edited by Fork, D. K., Speck, J. S., Wolf, R. M., and Shiosaki, T. (Mater. Res. Soc. Symp. Proc. 401, Pittsburgh, PA, 1996), p. 171.Google Scholar
11.Iijima, K., Tomita, Y., Takayama, R., and Ueda, I., J. Appl. Phys. 60, 361 (1986).CrossRefGoogle Scholar
12.Li, Z., Foster, C. M., Guo, D., Zhang, H., Bai, G. R., Baldo, P. M., and Rehn, L. E., Appl. Phys. Lett. 65, 1106 (1994).CrossRefGoogle Scholar
13.Stemmer, S., Streiffer, S. K., Ernst, F., Ruhle, M., Hsu, W-Y., and Raj, R., Solid State Ionics 75, 43 (1995).CrossRefGoogle Scholar
14.Stemmer, S., Streiffer, S. K., Hsu, W-Y., Ernst, F., Raj, R., and Ruhle, M., J. Mater. Res. 10, 791 (1995).CrossRefGoogle Scholar
15.Speck, J. S. and Pompe, W., J. Appl. Phys. 76, 466 (1994).CrossRefGoogle Scholar
16.Pompe, W., Gong, X., Suo, Z., and Speck, J. S., J. Appl. Phys. 74, 6012 (1993).CrossRefGoogle Scholar
17.Kwak, B. S., Erbil, A., Wilkens, B. J., Budai, J. D., Chisholm, M. F., and Boatner, L. A., Phys. Rev. Lett. 68, 3733 (1992).CrossRefGoogle Scholar
18.Eckstein, J. N., Bozovic, I., Schlom, D. G., and Harris, J. S., Jr., Appl. Phys. Lett. 57, 1049 (1990).CrossRefGoogle Scholar
19.Wada, O., Kuroda, K., Tanimura, J., Kataoka, M., Kojima, K., Takami, T., Hamanaka, K., and Ogama, T., Jpn. J. Appl. Phys. 30, L1881 (1991).CrossRefGoogle Scholar
20.Satoh, T., Fujita, J., Yoshitake, T., and Igarashi, H., Physica C 191, 359 (1992).CrossRefGoogle Scholar
21.Fujita, J., Yoshitake, T., Satoh, T., Ichihashi, T., and Igarashi, H., IEEE Trans. Magn. 27, 1205 (1991).CrossRefGoogle Scholar
22.Tanimura, J., Kuroda, K., Kataoka, M., Wada, O., Takami, T., Kojima, K., and Ogama, T., Jpn. J. Appl. Phys. 32, L254 (1993).CrossRefGoogle Scholar
23.Budai, J. D., Chisholm, M. F., Feenstra, R., Lowndes, D. H., Norton, D. P., Boatner, L. A., and Christen, D. K., Appl. Phys. Lett. 58, 2174 (1991).CrossRefGoogle Scholar
24.Aarnink, W. A. M., Reuvekamp, E. M. C. M., Verhoeven, M. A. J., Pedyash, M. V., Gerritsma, G. J., van Silfhout, A., and Rogalla, H., Appl. Phys. Lett. 61, 607 (1992).CrossRefGoogle Scholar
25.Schlom, D. G., Anselmetti, D., Bednorz, J. G., Broom, R. F., Catana, A., Frey, T., Ch. Gerber, Guntherodt, H-J., Lang, H. P., and Mannhart, J., Z. Phys. B 86, 163 (1992).CrossRefGoogle Scholar
26.Streiffer, S. K., Lairson, B. M., and Bravman, J. C., Appl. Phys. Lett. 57, 2501 (1990).CrossRefGoogle Scholar
27.Moeckly, B. H., Russek, S. E., Lathrop, D. K., Buhrman, R. A., Norton, M. G., and Carter, C. B., Appl. Phys. Lett. 57, 2951 (1990).CrossRefGoogle Scholar
28.Matsui, M., Yamamoto, K., and Nakajima, M., Phase Transitions 42, 103 (1993).CrossRefGoogle Scholar
29.Mueller, C. H., Holloway, P. H., Budai, J. D., Miranda, F. A., and Bhasin, K. B., J. Mater. Res. 10, 810 (1995).CrossRefGoogle Scholar
30.Kwo, J., Fleming, R. M., Kao, H. L., Werder, D. J., and Chen, C. H., Appl. Phys. Lett. 60, 1905 (1992).CrossRefGoogle Scholar
31.Eom, C. B., Cava, R. J., Fleming, R. M., Phillips, J. M., van Dover, R. B., Marshall, J. H., Hsu, J. W. P., Krajewski, J. J., and Peck, W. F., Jr., Science 258, 1766 (1992).CrossRefGoogle Scholar
32.Norton, N. G., Summerfeit, S. R., and Carter, C. B., Appl. Phys. Lett. 56, 2246 (1990).CrossRefGoogle Scholar
33.Argrawal, V., Chandrasekhar, N., Zhang, Y. J., Achutharaman, V. S., Mecartney, M. L., and Goldman, A. M., J. Vac. Sci. Technol. A 10, 1531 (1992).CrossRefGoogle Scholar
34.Kawasaki, M., Takahashi, K., Maeda, T., Tsuchiya, R., Shinohara, M., Ishiyama, O., Yonezawa, T., Yoshimoto, M., and Koinuma, H., Science 266, 1540 (1994).CrossRefGoogle Scholar
35.Liang, Y. and Bonnell, D. A., Surf. Sci. 310, 128 (1994).CrossRefGoogle Scholar
36.Jiang, Q. D. and Zegenhagen, J., Surf. Sci. Lett. 338, L882 (1995).CrossRefGoogle Scholar
37.Kim, S., Kang, Y., and Baik, S., Thin Solid Films 256, 240 (1995).CrossRefGoogle Scholar
38.Wasa, K., Haneda, Y., Satoh, T., Adachi, H., Hayashi, S., and Setsune, K., Jpn. J. Appl. Phys. 34, 5132 (1995).CrossRefGoogle Scholar
39. Kanthal is a registered trademark of Kanthal AB, Sweden.Google Scholar
40.Clark, J. C., Maria, J. P., Hubbard, K. J., and Schlom, D. G., unpublished results.Google Scholar
41. Commercial Crystal Laboratories, Naples, FL.Google Scholar
42.Theis, C. D., Thesis, M.S., The Pennsylvania State University, University Park, PA.Google Scholar
43.Landolt–Bornstein: Numerical Data and Functional Relationships in Science and Technology, New Series, Group III, Vol. 12, edited by Hellwege, K-H. (Springer-Verlag, Berlin, 1978), p. 156.Google Scholar
44.Flynn, C. P., MRS Bull. 16, 30 (June 1991).CrossRefGoogle Scholar
45.Nagai, H., J. Appl. Phys. 45, 3789 (1974).CrossRefGoogle Scholar
46.Ramesh, R., Sands, T., and Keramidas, V. G., Appl. Phys. Lett. 63, 731 (1993).CrossRefGoogle Scholar