Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-23T13:02:31.307Z Has data issue: false hasContentIssue false

Do Carbon Nanotubes Spin When Bundled?

Published online by Cambridge University Press:  31 January 2011

Young-Kyun Kwon
Affiliation:
Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824–1116
David Tománek
Affiliation:
Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824–1116
Young Hee Lee
Affiliation:
Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824–1116, and Department of Physics and Semiconductor Physics Research Center, Jeonbuk National University, Jeonju 561–756, Korea
Kee Hag Lee
Affiliation:
Department of Physics, Tokyo Institute of Technology, 1–12–1 Oh-okayama, Meguro-ku, Tokyo 152, Japan
Susumu Saito
Affiliation:
Department of Physics, Tokyo Institute of Technology, 1–12–1 Oh-okayama, Meguro-ku, Tokyo 152, Japan
Get access

Abstract

Using ab initio and parametrized techniques, we determine the equilibrium structure of an ordered “bundle” of (10,10) carbon nanotubes. Because of small intertube interaction and lattice frustration, we predict a very soft libration mode to occur at v ≈ 12 cm−1. This mode is predicted to disappear above the orientational melting temperature which marks the onset of free tube rotations about their axis. We discuss the effect of the weak intertube coupling and orientational disorder on the electronic structure near the Fermi level.

Type
Articles
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Kroto, H. W., Heath, J. R., O'Brien, S. C., Curl, R. F., and Smalley, R. E., Nature (London) 318, 162 (1985).CrossRefGoogle Scholar
2.Iijima, S., Nature (London) 354, 56 (1991).CrossRefGoogle Scholar
3.Treacy, M. M. J., Ebbesen, T. W., and Gibson, J. M., Nature (London) 381, 678 (1996).CrossRefGoogle Scholar
4.Thess, A., Lee, R., Nikolaev, P., Dai, H., Petit, P., Robert, J., Xu, C., Lee, Y. H., Kim, S. G., Colbert, D. T., Scuseria, G., Tománek, D., Fischer, J. E., and Smalley, R. E., Science 273, 483 (1996).CrossRefGoogle Scholar
5. For an overview of the rapidly developing field of carbon nanotubes, see Dresselhaus, M. S., Dresselhaus, G., and Eklund, P. C., Science of Fullerenes and Carbon Nanotubes (Academic Press Inc., San Diego, 1996), and references therein.Google Scholar
6.Yannoni, C. S., Johnson, R. D., Meijer, G., Bethune, D. S., and Salem, J. R., J. Phys. Chem. 95, 9 (1991); R. Tycko, R. C. Haddon, G. Dabbagh, S. H. Glarum, D. C. Douglass, and A. M. Mujsce, J. Phys. Chem. 95, 518 (1991).CrossRefGoogle Scholar
7.Krätschmer, W., Lamb, L. D., Fostiropoulos, K., and Huffman, D. R., Nature (London) 347, 354 (1990).CrossRefGoogle Scholar
8.Nikolaev, P., Thess, A., Rinzler, A. G., Colbert, D. T., and Smalley, R. E., Chem. Phys. Lett. 266, 422 (1997).CrossRefGoogle Scholar
9.Lee, Y. H., Kim, S. G., and Tománek, D., Phys. Rev. Lett. 78, 2393 (1997).CrossRefGoogle Scholar
10.Schluter, M., Lannoo, M., Needels, M., Baraff, G. A., and Tománek, D., Phys. Rev. Lett. 68, 526 (1992).CrossRefGoogle Scholar
11.Saito, S. and Oshiyama, A., Phys. Rev. Lett. 66, 2637 (1991).CrossRefGoogle Scholar
12.Kane, C. L. and Mele, E. J., Phys. Rev. Lett. 78, 1932 (1997).CrossRefGoogle Scholar
13.Fischer, J. E., Dai, H., Thess, A., Lee, R., Hanjani, N., Dehaas, D. L., and Smalley, R. E., Phys. Rev. B 55, R4921 (1997).CrossRefGoogle Scholar
14.Sugino, O. and Oshiyama, A., Phys. Rev. Lett. 68, 1858 (1992).CrossRefGoogle Scholar
15.Troullier, N. and Martins, J. L., Phys. Rev. B 43, 1993 (1991).CrossRefGoogle Scholar
16.Kleinman, L. and Bylander, D. M., Phys. Rev. Lett. 48, 1425 (1982).CrossRefGoogle Scholar
17.Ceperley, D. M. and Alder, B. J., Phys. Rev. Lett. 45, 566 (1980).CrossRefGoogle Scholar
18.Perdew, J. P. and Zunger, A., Phys. Rev. B 23, 5048 (1981).CrossRefGoogle Scholar
19.Weaver, J. H., Martins, J. L., Komeda, T., Chen, Y., Ohno, T. R., Kroll, G. H., Troullier, N., Haufler, R. E., and Smalley, R. E., Phys. Rev. Lett. 66, 1741 (1991).CrossRefGoogle Scholar
20.Okada, S. and Saito, S., Phys. Rev. B 55, 4039 (1997).CrossRefGoogle Scholar
21.Tománek, D. and Schluter, Michael A., Phys. Rev. Lett. 67, 2331 (1991).CrossRefGoogle Scholar
22. Rather than using a fixed cutoff distance in our parametrized scheme, which would cause artifacts in the energy due to a changing neighbor map during tube rotations, we obtained the potential energy surface by carefully integrating over energy differences due to small rotations, during which the neighbor map was kept fired.Google Scholar
23.Holmes, W., Hone, J., Richards, P. L., and Zettl, A., Bull. Am. Phys. Soc. 43, 629 (1998).Google Scholar
24.Wildöer, J. W. G., Venema, L. C., Rinzler, A. G., Smalley, R. E., and Dekker, C., Nature (London) 391, 59 (1998).CrossRefGoogle Scholar
25.Odom, T. W., Huang, J-L., Kim, P., and Lieber, C. M., Nature (London) 391, 62 (1998).CrossRefGoogle Scholar
26.Kwon, Y-K. and Tománek, D. (unpublished).Google Scholar
27.Kaiser, A. B., Düsberg, G., and Roth, S., Phys. Rev. B 57, 1418 (1998).CrossRefGoogle Scholar
28.Langer, L., Bayot, V., Grivei, E., Issi, J-P., Heremans, J. P., Olk, C. H., Stockman, L., Van Haesendonck, C., and Bruynseraede, Y., Phys. Rev. Lett. 76, 479 (1996).CrossRefGoogle Scholar
29.Christides, C., Neumann, D. A., Prassides, K., Copley, J. R. D., Rush, J. J., Rosseinsky, M. J., Murphy, D. W., and Haddon, R. C., Phys. Rev. B 46, 12 088 (1992).CrossRefGoogle Scholar
30.Delaney, P., Choi, H. J., Ihm, J., Louie, S. G., and Cohen, M. L., Nature (London) 391, 466 (1998).CrossRefGoogle Scholar
31.Charlier, J-C., Gonze, X., and Michenaud, J-P., Europhys. Lett. 29, 43 (1995).CrossRefGoogle Scholar