Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-10T21:23:08.818Z Has data issue: false hasContentIssue false

Divacancy control of the balance between ion-beam-induced epitaxial cyrstallization and amorphization in silicon

Published online by Cambridge University Press:  31 January 2011

J. Linnros
Affiliation:
AT&T Bell Laboratories, Murray Hill, New Jersey 07974
R. G. Elliman
Affiliation:
AT&T Bell Laboratories, Murray Hill, New Jersey 07974
W. L. Brown
Affiliation:
AT&T Bell Laboratories, Murray Hill, New Jersey 07974
Get access

Abstract

The ion-bombardment-induced reversible movement of a planar amorphous/crystalline interface in silicon has been studied between 100 and 400 °C. The temperature dependence of the ion dose rate at which there is zero interface movement has an activation energy of 1.2 eV, the dissociation energy of divacancies. Scaling of this dose rate for different ion species exhibits a quadratic dependence on the density of displaced atoms in the collision cascade of individual ions, giving further evidence for divacancy control of the interface movement.

Type
Articles
Copyright
Copyright © Materials Research Society 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Olson, G. L., Kokorowski, S. A., Roth, J. A., and Hess, L. D., in Laser—Solid Interactions and Transient Thermal Processing of Materials, edited by Narayan, J., Brown, W. L., and Lemons, R. A. (Mat. Res. Soc. Symp. Proc, North-Holland, New York, 1983), Vol. 13, p. 141.Google Scholar
2Holmén, G., Peterström, S., Burén, A., and Bogh, E., Radiat. Eff. 24, 45 (1975).CrossRefGoogle Scholar
3Holmén, G., Högberg, P., and Burén, A., Radiat. Eff. 24, 39 (1975).CrossRefGoogle Scholar
4Golecki, I., Chapman, G. E., Lau, S. S., Tsaur, B. Y., and Mayer, J. W., Phys. Lett. A71, 267 (1979).CrossRefGoogle Scholar
5Nakata, J. and Kajiyama, K., Appl. Phys. Lett. 40, 686 (1982).CrossRefGoogle Scholar
6Linnros, J., Svensson, B., and Holmén, G., Phys. Rev. B 30, 3629 (1984).CrossRefGoogle Scholar
7Linnros, J., Holmen, G., and Svensson, B., Phys. Rev. B 32, 2770 (1985).CrossRefGoogle Scholar
8Williams, J. S., Elliman, R. G., Brown, W. L., and Seidel, T. E., Phys. Rev. Lett. 55, 1482 (1985).CrossRefGoogle Scholar
9Williams, J. S., Elliman, R. G., Brown, W. L., and Seidel, T. E., in Layered Structures, Epitaxy and Interfaces, edited by Gibson, J. M. and Dawson, L. R. (Mat. Res. Soc. Symp., Mat. Res. Soc, Pittsburgh, PA, 1985), Vol. 37, p. 127.Google Scholar
10Elliman, R. G., Williams, J. S., Brown, W. L., Leiberich, A., Maher, D. M., and Kftoell, R. V., Nucl. Instr. Methods B 19/20, 435 (1987).CrossRefGoogle Scholar
11Linnros, J., Ph. D. thesis, Chalmers University of Technology, Göteborg, Sweden (1985).Google Scholar
12Leiberich, A., Maher, D. M., Knoell, R. V., and Brown, W. L., Nucl. Instrum. Methods B 19/20, 457 (1987).CrossRefGoogle Scholar
13Biersack, J. P. and Haggmark, L. J., Nucl. Instrum. Methods 174, 257 (1980).CrossRefGoogle Scholar
14Vook, F. L. and Stein, H. J., Radiat. Eff. 2, 23 (1969).CrossRefGoogle Scholar
15Corbett, J. W. and Bourgoin, J. C., in Point Defects in Solids, edited by Crawford, J. H. and Slifkin, L. M. (Plenum, New York, 1975), p. 1.Google Scholar