Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-22T22:09:42.547Z Has data issue: false hasContentIssue false

Distributions of kinetic pathways in strain relaxation of heteroepitaxial films

Published online by Cambridge University Press:  11 October 2017

Dustin Andersen*
Affiliation:
Department of Materials Science and Engineering, & Center for Materials, Devices and Integrated Systems, Rensselaer Polytechnic Institute, Troy, New York 12180, USA
Robert Hull
Affiliation:
Department of Materials Science and Engineering, & Center for Materials, Devices and Integrated Systems, Rensselaer Polytechnic Institute, Troy, New York 12180, USA
*
a) Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

The kinetic relaxation pathways for strained heteroepitaxial films are mapped using a process simulator that integrates experimental and model descriptions of the energetic and kinetic parameters that define the nucleation, propagation, and interaction of strain relieving dislocations. This paper focuses on Ge x Si1−x /Si(100), but the methodologies described should be extendible to other systems. The kinetic pathways for strain evolution are plotted for film growth as functions of the primary kinetic parameters: growth temperature, growth rate, and initial lattice mismatch, generating relaxation surfaces for parameter pairs. Sensitivity analyses are presented of how deviations from mean parameters disperse the resultant relaxation surfaces. Finally, multi-parameter “fingerprinting” of the dislocation array is shown to illustrate how fundamental kinetic mechanisms—particularly dislocation nucleation mechanisms—define the final dislocation array. The overarching goal is to establish a robust framework for predicting, interrogating, and optimizing strain relaxation pathways and underlying mechanisms, for misfit dislocations in strained heteroepitaxial films.

Type
Invited Feature Paper
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Contributing Editor: Artur Braun

This paper has been selected as an Invited Feature Paper.

References

REFERENCES

Hull, R., Andersen, D., Parveneh, H., and Bean, J.C.: Materials genomics of thin film strain relaxation by misfit dislocations. J. Appl. Phys. 118, 225306 (2015).CrossRefGoogle Scholar
Andersen, D. and Hull, R.: Effect of asymmetric strain relaxation on dislocation relaxation processes in heteroepitaxial semiconductors. J. Appl. Phys. 121, 075302 (2017).CrossRefGoogle Scholar
Van der Merwe, J.H.: Crystal interfaces. Part I. Semi-infinite crystals. J. Appl. Phys. 34, 117 (1963).CrossRefGoogle Scholar
Van der Merwe, J.H.: Equilibrium structure of a thin epitaxial film. J. Appl. Phys. 41, 4725 (1970).CrossRefGoogle Scholar
Van der Merwe, J.H.: Misfit dislocation generation in epitaxial layers. Crit. Rev. Solid State Mater. Sci. 17, 187 (1991).Google Scholar
Matthews, J.W. and Blakeslee, A.E.: Defects in epitaxial multilayers: I. Misfit dislocations. J. Cryst. Growth 27, 118 (1974).Google Scholar
Matthews, J.W. and Blakeslee, A.E.: Defects in epitaxial multilayers: II. Dislocation pile-ups, threading dislocations, slip lines and cracks. J. Cryst. Growth 29, 273 (1975).CrossRefGoogle Scholar
Matthews, J.W. and Blakeslee, A.E.: Defects in epitaxial multilayers: III. Preparation of almost perfect multilayers. J. Cryst. Growth 32, 265 (1976).Google Scholar
Dodson, B.W. and Tsao, J.Y.: Relaxation of strained-layer semiconductor structures via plastic flow. Appl. Phys. Lett. 51, 1325 (1987).CrossRefGoogle Scholar
Coppeta, R.A., Holec, D., Ceric, H., and Grasser, T.: Evaluation of dislocation energy in thin films. Philos. Mag. 95, 186 (2015).Google Scholar
Re, M., Scalese, S., Mirabella, S., Terrasi, A., Priolo, F., Rimini, E., Berti, M., Coati, A., Drigo, A., Carnera, A., De Salvador, D., Spinella, C., and La Mantia, A.: Structural characterization and stability of Si1−x Ge x /Si(100) heterostructures grown by molecular beam epitaxy. J. Cryst. Growth 227–228, 749 (2001).CrossRefGoogle Scholar
Liu, J.P., Kong, M.Y., Liu, X.F., Li, J.P., Huang, D.D., Li, L.X., and Sun, D.Z.: Strain-induced morphological evolution and preferential interdiffusion in SiGe epitaxial film on Si(100) during high-temperature annealing. J. Cryst. Growth 201/202, 556 (1999).CrossRefGoogle Scholar
Hollander, B., Mantl, S., Stritzker, B., Jorke, H., and Kasper, E.: Strain measurements and thermal stability of Si1−x Ge x /Si strained layers. J. Mater. Res. 4, 163 (1989).CrossRefGoogle Scholar
Alexander, H. and Haasen, P.: Dislocations and plastic flow in the diamond structure. Solid State Phys. 22, 27 (1969).Google Scholar
Imai, M. and Sumino, K.: In situ X-ray topographic study of the dislocation mobility in high-purity and impurity-doped silicon crystals. Philos. Mag. A 47, 599 (1983).CrossRefGoogle Scholar
Yonenaga, I.: Dislocation velocities and mechanical strength of bulk GeSi crystals. Phys. Status Solidi A 171, 41 (1999).Google Scholar
Hagen, W. and Strunk, H.: A new type of source generating misfit dislocations. Appl. Phys. 17, 85 (1978).Google Scholar
Rajan, K. and Denhoff, M.: Misfit dislocation structure at a Si/Si x Ge1−x strained-layer interface. J. Appl. Phys. 62, 1710 (1987).Google Scholar
Rzaev, M., Schaffler, F., Vdovin, V., and Yugova, T.: Misfit dislocation nucleation and multiplication in fully strained SiGe/Si heterostructures under thermal annealing. Mater. Sci. Semicond. Process. 8, 137 (2005).CrossRefGoogle Scholar
Hull, R. and Bean, J.C.: Variation in misfit dislocation behavior as a function of strain in the GeSi/Si system. Appl. Phys. Lett. 54, 925 (1989).CrossRefGoogle Scholar
Freund, L.B.: A criterion for arrest of a threading dislocation in a strained epitaxial layer due to an interface misfit dislocation in its path. J. Appl. Phys. 68, 2073 (1990).Google Scholar
Stach, E.A., Schwarz, K.W., Hull, R., Ross, F.M., and Tromp, R.M.: New mechanism for dislocation blocking in strained layer epitaxial growth. Phys. Rev. Lett. 84, 947 (2000).CrossRefGoogle ScholarPubMed
Hull, R., Bean, J.C., Bahnck, D., Peticolas, L.J. Jr., Short, K.T., and Unterwald, F.C.: Interpretation of dislocation propagation velocities in strained Ge x Si1−x /Si(100) heterostructures by the diffusive kink pair model. J. Appl. Phys. 70, 2052 (1991).Google Scholar
Hull, R. and Bean, J.C.: New insights into the microscopic motion of dislocations in covalently bonded semiconductors by in situ transmission electron microscope observations of misfit dislocations in thin strained epitaxial layers. Phys. Status Solidi A 138, 533 (1993).CrossRefGoogle Scholar
Tuppen, C.G. and Gibbings, C.J.: The kinetics of dislocation glide in SiGe alloy layers. J. Electron. Mater. 19, 1101 (1990).CrossRefGoogle Scholar
Houghton, D.C.: Strain relaxation kinetics in Si1−x Ge x /Si heterostructures. J. Appl. Phys. 70, 2136 (1991).CrossRefGoogle Scholar
Yuan, Q., Thesis, M.S.: Misfit Strain Relaxation Mechanisms in Thin Films (University of Virginia, 1999).Google Scholar
Willis, J.R., Jain, S.C., and Bullough, R.: Work hardening and strain relaxation in strained-layer buffers. Appl. Phys. Lett. 59, 920 (1991).CrossRefGoogle Scholar
Gillard, V.T., Nix, W.D., and Freund, L.B.: Role of dislocation blocking in limiting strain relaxation in heteroepitaxial films. J. Appl. Phys. 76, 7280 (1994).Google Scholar
Kujofsa, T., Cheruku, S., Yu, W., Outlaw, B., Xhurxhi, S., Obst, F., Sidoti, D., Bertoli, B., Rago, P.B., Suarez, E.N., Jain, F.C., and Ayers, J.E.: Relaxation dynamics and threading dislocations in ZnSe and ZnS y Se1−y /GaAs(001) heterostructures. J. Electron. Mater. 42, 2764 (2013).Google Scholar
Jain, U., Jain, S.C., Nijs, J., Willis, J.R., Bullough, R., Mertens, R.P., and Van Overstraeten, R.: Calculation of critical-layer-thickness and strain relaxation in Ge x Si1−x strained layers with interacting 60 and 90° dislocations. Solid-State Electron. 36, 331 (1993).Google Scholar
Menendez, J.: Analytical strain relaxation model for Si1−x Ge x /Si epitaxial layers. J. Appl. Phys. 105, 063519 (2009).CrossRefGoogle Scholar
Gosling, T.J., Jain, S.C., and Harker, A.H.: The kinetics of strain relaxation in lattice-mismatched semiconductor layers. Phys. Status Solidi A 146, 713 (1994).CrossRefGoogle Scholar
Tan, E.H. and Sun, L.Z.: Dislocation dynamics in semiconductor thin film-substrate systems. Mater. Res. Soc. Symp. Proc. 795, 47 (2004).Google Scholar
Schwarz, K.W., Cai, J., and Mooney, P.M.: Comparison of large-scale layer-relaxation simulations with experiment. Appl. Phys. Lett. 85, 2238 (2004).Google Scholar
Fertig, R.S. and Baker, S.P.: Simulation of dislocations and strength in thin films: A review. Prog. Mater. Sci. 54, 874 (2009).Google Scholar
Schwarz, K.W.: Discrete dislocation dynamics study of strained-layer relaxation. Phys. Rev. Lett. 91, 145503 (2003).CrossRefGoogle ScholarPubMed
Kasper, E., Herzog, H.J., and Kibbel, H.: A one-dimensional SiGe superlattice grown by UHV epitaxy. Appl. Phys. 8, 199 (1975).Google Scholar
Stach, E.A., Hull, R., Tromp, R.M., Reuter, M.C., Copel, M., LeGoues, F.K., and Bean, J.C.: Effect of the surface upon misfit dislocation velocities during the growth and annealing of SiGe(001) heterostructures. J. Appl. Phys. 83, 1931 (1998).Google Scholar
Hull, R.: Metastable strained layer configurations in the SiGe/Si system. In Properties of Silicon Germanium and SiGe: Carbon, Kasper, E. and Lyutovich, K., eds. (IEE INSPEC, London, U.K., 2000); pp. 2141.Google Scholar
Whaley, G.J. and Cohen, P.I.: Relaxation of strained InGaAs during molecular beam epitaxy. Appl. Phys. Lett. 57, 144 (1990).Google Scholar
Floro, J.A., Chason, E., and Lee, S.R.: Real time measurement of epilayer strain using a simplified wafer curvature technique. Mater. Res. Soc. Symp. Proc. 405, 381 (1996).Google Scholar
Yaguchi, H., Fujita, K., Fukatsu, S., Shiraki, Y., and Ito, R.: Strain relaxation in MBE-grown Si1−x Ge x /Si(100) heterostructures by annealing. Jpn. J. Appl. Phys. 30, 1450 (1991).CrossRefGoogle Scholar
Bai, G., Nicolet, M-A., Chern, C.H., and Wang, K.L.: Strain relief of metastable GeSi layers on Si(100). J. Appl. Phys. 75, 4475 (1994).Google Scholar
Kuhne, H.: On a substituting, sticking and trapping model of CVD Si1−x G x layer growth. J. Cryst. Growth 125, 291 (1992).CrossRefGoogle Scholar
Xiaojun, J. and Junwu, L.: Dependence of Ge x Si1−x epitaxial growth on GeH4 flow using chemical vapour deposition. J. Mater. Sci.: Mater. Electron. 8, 405 (1997).Google Scholar
Yang, X. and Tao, M.: A kinetic model for Si1−x Ge x growth from SiH4 and GeH4 by CVD. J. Electrochem. Soc. 154, H53 (2007).Google Scholar