Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-30T01:55:07.692Z Has data issue: false hasContentIssue false

Distinct element method for multiscale modeling of cross-linked carbon nanotube bundles: From soft to strong nanomaterials

Published online by Cambridge University Press:  22 December 2014

Igor Ostanin
Affiliation:
Department of Civil Engineering, University of Minnesota, Minneapolis, Minnesota 55455, USA
Roberto Ballarini
Affiliation:
Department of Civil and Environmental Engineering, University of Houston, Houston, Texas 77204, USA
Traian Dumitrică*
Affiliation:
Department of Mechanical Engineering, University of Minnesota, Minneapolis, Minnesota 55455, USA; and Department of Civil Engineering, University of Minnesota, Minneapolis, Minnesota 55455, USA
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Predicting the impact of cross-links on the mechanics of carbon nanotube-based materials is a challenging endeavor, as the micro- and nanostructure is composed of continuous nanofibers, discontinuous interfaces, and covalent bridges. Here we demonstrate a new modeling solution in the context of the distinct element method (DEM). By representing nanotubes as bonded cylinder segments undergoing van der Waals adhesion, viscous friction, and contact bonding, we are able to simulate how cross-linking transforms a soft bundle into a strong one. We predict that the sp3-sp cross-links formed by interstitial carbon atoms can improve the tensile strength by an order of magnitude, in agreement with experiment and molecular dynamics simulations. The DEM methodology allows performing the multiscale simulation needed for developing strategies to further enhance the mechanical performance.

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Iijima, S.: Helical microtubules of graphite carbon. Nature 354, 56 (1991).CrossRefGoogle Scholar
Krishnan, A., Dujardin, E., Ebbesen, T.W., Yianilos, P.N., and Treacy, M.M.J.: Young’s modulus of single-walled nanotubes. Phys. Rev. B 58, 14013 (1998).CrossRefGoogle Scholar
Dumitrică, T., Belytschko, T., and Yakobson, B.I.: Bond-breaking bifurcation states in carbon nanotube fracture. J. Chem. Phys. 118(21), 9485 (2003).CrossRefGoogle Scholar
Dumitrică, T., Hua, M., and Yakobson, B.I.: Symmetry-, time-, and temperature-dependent strength of carbon nanotubes. Proc. Natl. Acad. Sci. U.S.A. 103(18), 6105 (2006).CrossRefGoogle ScholarPubMed
Demczyk, B.G., Wang, Y.M., Cumings, J., Hetman, M., Han, W., Zettl, A., and Ritchie, R.O.: Direct mechanical measurement of the tensile strength and elastic modulus of multiwalled carbon nanotubes. Mater. Sci. Eng., A 334, 173 (2002).CrossRefGoogle Scholar
Yu, M.F., Lourie, O., Deyer, M.J., Moloni, K., Kelly, T.F., and Ruoff, R.S.: Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load. Science 287, 637 (2000).CrossRefGoogle ScholarPubMed
Salvetat, J-P., Briggs, G.A.D., Bonard, J-M., Bacsa, R.R., Kulik, A.J., Stöckli, T., Burnham, N.A., and Forró, L.: Elastic and shear moduli of single-walled carbon nanotube ropes. Phys. Rev. Lett. 82, 944 (1999).CrossRefGoogle Scholar
Yu, M-F., Files, B.S., Arepalli, S., and Ruoff, R.S.: Tensile loading of ropes of single wall carbon nanotubes and their mechanical properties. Phys. Rev. Lett. 84, 5552 (2000).CrossRefGoogle ScholarPubMed
Harris, J.M., Iyer, G.R.S., Bernhardt, A.K., Huh, J.Y., Hudson, S.D., Fagan, J.A., and Hobbie, E.K.: Electronic durability of flexible transparent films from type-specific single-wall carbon nanotubes. ACS Nano 6, 881 (2012).CrossRefGoogle ScholarPubMed
Foroughi, J., Spinks, G.M., Wallace, G.G., Oh, J., Kozlov, M.E., Fang, S., Mirfakhrai, T., Madden, J.D.W., Shin, M.K., Kim, S.J., and Baughman, R.H.: Torsional carbon nanotube artificial muscles. Science 334, 494 (2011).CrossRefGoogle ScholarPubMed
Dalton, A.B., Collins, S., Muñoz, E., Razal, J.M., Ebron, V.H., Ferraris, J.P., Coleman, J.N., Kim, B.G., and Baughman, R.H.: Super-tough carbon-nanotube fibres. Nature 423, 703 (2003).CrossRefGoogle ScholarPubMed
Li, Y-L., Kinloch, I.A., and Windle, A.H.: Direct spinning of carbon nanotube fibers from chemical vapor deposition synthesis. Science 304, 276 (2004).CrossRefGoogle ScholarPubMed
Krasheninnikov, A.V. and Banhart, F.: Engineering of nanostructured carbon materials with electron or ion beams. Nat. Mater. 6, 723 (2007).CrossRefGoogle ScholarPubMed
Kis, A., Csányi, G., Salvetat, J.P., Lee, T.N., Couteau, E., Kulik, A.J., Benoit, W., Brugger, J., and Forró, L.: Reinforcement of single-walled carbon nanotube bundles by intertube bridging. Nat. Mater. 3, 153 (2004).CrossRefGoogle ScholarPubMed
Filleter, T. and Espinosa, H.D.: Multi-scale mechanical improvement produced in carbon nanotube fibers by irradiation cross-linking. Carbon 56, 1 (2013).CrossRefGoogle Scholar
O’Brien, N.P., McCarthy, M.A., and Curtin, W.A.: Improved inter-tube coupling in CNT bundles through carbon ion irradiation. Carbon 51, 173 (2013).CrossRefGoogle Scholar
de Juan, A, Pouillon, Y., Ruiz-González, L., Torres-Pardo, A., Casado, S., Martín, N., Rubio, Á., and Pérez, E.M.: Mechanically interlocked single-wall carbon nanotubes. Angew. Chem., Int. Ed. 53, 5394 (2014).CrossRefGoogle ScholarPubMed
Filleter, T., Bernal, R., Li, S., and Espinosa, H.D.: Ultrahigh strength and stiffness in cross-linked hierarchical carbon nanotube bundles. Adv. Mater. 23, 2855 (2011).CrossRefGoogle ScholarPubMed
Krasheninnikov, A.V. and Nordlund, K.: Ion and electron irradiation-induced effects in nanostructured materials. J. Appl. Phys. 107, 071301 (2010).CrossRefGoogle Scholar
O’Brien, N.P., McCarthy, M.A., and Curtin, W.A.: A theoretical quantification of the possible improvement in the mechanical properties of carbon nanotube bundles by carbon ion irradiation. Carbon 53, 346 (2013).CrossRefGoogle Scholar
Ni, B., Andrews, R., Jacques, D., Qian, D., Wijesundara, M.B.J., Choi, Y.S., and Sinnott, S.B.: A combined computational and experimental study of ion-beam modification of carbon nanotube bundles. J. Phys. Chem. B 105, 12719 (2001).CrossRefGoogle Scholar
Cornwell, C.F. and Welch, C.R.: Very-high-strength (60-GPa) carbon nanotube fiber design based on molecular dynamics simulations. J. Chem. Phys. 134, 204708 (2011).CrossRefGoogle ScholarPubMed
Xia, Z.H., Guduru, P.R., and Curtin, W.A.: Enhancing mechanical properties of multiwall carbon nanotubes via sp(3) interwall bridging. Phys. Rev. Lett. 98, 245501 (2007).CrossRefGoogle Scholar
Zhigilei, L., Wei, C., and Srivastava, D.: Mesoscopic model for dynamic simulations of carbon nanotubes. Phys. Rev. B 71, 165417 (2005).CrossRefGoogle Scholar
Buehler, M., Kong, Y., and Gao, H.: Deformation mechanisms of very long single-wall carbon nanotubes subject to compressive loading. J. Eng. Mater. Technol. 126, 245 (2004).CrossRefGoogle Scholar
Anderson, T., Akatyeva, E., Nikiforov, I., Potyondy, D., Ballarini, R., and Dumitrică, T.: Toward distinct element method simulations of carbon nanotube systems. J. Nanotechnol. Eng. Med. 1, 041009 (2010).CrossRefGoogle Scholar
Ostanin, I., Ballarini, R., Potyondy, D., and Dumitrică, T.: A distinct element method for large scale simulations of carbon nanotube assemblies. J. Mech. Phys. Solids 61, 762 (2013).CrossRefGoogle Scholar
Cundall, P.A. and Strack, O.D.L.: A discrete model for granular assemblies. Geotechnique 29(1), 47 (1979).CrossRefGoogle Scholar
Xu, M., Futaba, D.N., Yamada, T., Yumura, M., and Hata, K.: Carbon nanotubes with temperature-invariant viscoelasticity from -196 to 1000°C. Science 330, 1364 (2010).CrossRefGoogle Scholar
Nikiforov, I., Zhang, D-B., James, R.D., and Dumitrică, T.: Wavelike rippling in multi-walled carbon nanotubes under pure bending. Appl. Phys. Lett. 96, 123107 (2010).CrossRefGoogle Scholar
Zhang, D-B. and Dumitrică, T.: Elasticity of ideal single-walled carbon nanotubes via symmetry-adapted tight-binding objective modeling. Appl. Phys. Lett. 93, 031919 (2008).CrossRefGoogle Scholar
Carlson, A. and Dumitrică, T.: Extended tight-binding potential for modeling intertube interactions in carbon nanotubes. Nanotechnology 18, 065706 (2007).CrossRefGoogle Scholar
Ostanin, I., Ballarini, R., and Dumitricǎ, T.: Distinct element method modeling of carbon nanotube bundles with intertube sliding and dissipation. J. Appl. Mech. 81, 061004 (2014).CrossRefGoogle Scholar
Johnson, S.M., Williams, J.R., and Cook, B.K.: Quaternion-based rigid body rotation integration algorithms for use in particle methods. Int. J. Numer. Methods Eng. 74, 1303 (2008).CrossRefGoogle Scholar
Wang, Y., Semler, M., Ostanin, I., Hobbie, E.K., and Dumitrică, T.: Rings and rackets from single-wall carbon nanotubes: Manifestations of mesoscale mechanics. Soft Matter (2014). DOI: 10.1039/C4SM00865K.CrossRefGoogle ScholarPubMed
Tersoff, J.: New empirical approach for the structure and energy of covalent systems. Phys. Rev. B 37, 6991 (1988).CrossRefGoogle ScholarPubMed
Wang, Y., Gaidau, C., Ostanin, I., and Dumitrică, T.: Ring windings from single-wall carbon nanotubes: A distinct element method study. Appl. Phys. Lett. 103, 183902 (2013).CrossRefGoogle Scholar
Osváth, Z., Vértesy, G., Tapasztó, L., Wéber, F., Horváth, Z.E., Gyulai, J., and Biró, L.P.: Atomically resolved STM images of carbon nanotube defects produced by Ar+ irradiation. Phys. Rev. B 72, 045429 (2005).CrossRefGoogle Scholar
Supplementary material: File

Supplementary Material

Supplementary information supplied by authors.

Download Supplementary Material(File)
File 752.9 KB