Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-12T21:18:38.484Z Has data issue: false hasContentIssue false

Dissociation of water on atomically-defined cobalt oxide nanoislands on Pt(111) and its effect on the adsorption of CO

Published online by Cambridge University Press:  21 January 2019

Tobias Wähler
Affiliation:
Lehrstuhl für Physikalische Chemie II, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen D-91058, Germany
Chantal Hohner
Affiliation:
Lehrstuhl für Physikalische Chemie II, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen D-91058, Germany
Zhaozong Sun
Affiliation:
Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus C 8000, Denmark
Ralf Schuster
Affiliation:
Lehrstuhl für Physikalische Chemie II, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen D-91058, Germany
Jonathan Rodríguez-Fernández
Affiliation:
Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus C 8000, Denmark
Jeppe Vang Lauritsen*
Affiliation:
Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus C 8000, Denmark
Jörg Libuda*
Affiliation:
Lehrstuhl für Physikalische Chemie II, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen D-91058, Germany; and Erlangen Catalysis Resource Center and Interdisciplinary Center for Interface-Controlled Processes, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen D-91058, Germany
*
a)Address all correspondence to these authors. e-mail: jvang@inano.au.dk
Get access

Abstract

We have investigated the adsorption and dissociation of water and its co-adsorption with CO on atomically defined cobalt oxide nanoislands on Pt(111). The CoO islands were prepared under ultrahigh vacuum (UHV) conditions by reactive deposition of Co metal in oxygen atmosphere. The island structure was characterized by scanning tunneling microscopy (STM), showing that the nanoislands consist of a CoO bilayer and are regularly shaped with island edges that are mainly terminated by Co2+ ions. D2O was dosed in UHV onto the CoO islands on Pt(111) after pre-saturation with CO. D2O dissociation was monitored in situ by isothermal and temperature programmed infrared reflection absorption spectroscopy (IRAS). Isotopic exchange experiments were performed with H2O, D2O, and D218O to elucidate the nature of the hydroxyl groups. Three principal types of OD species are identified: (i) isolated OD at the edges of the CoO islands (Co-OeD), (ii) OD groups within larger hydroxylated areas on the CoO islands (Co-OcD), and (iii) isolated OD groups on the CoO terraces (Co-OtD). At 400 K, water adsorbs dissociatively on the CoO islands and forms isolated hydroxyl species (Co-OeD) at the island edges only. At room temperature (300 K), the coverage of hydroxyl groups increases rapidly, in line with the water-assisted hydroxylation reaction suggested previously. Adsorption experiments with D218O suggest that two equivalent groups are formed from one water molecule after dissociation at island edges, leading to the formation of larger hydroxylated areas on the CoO islands (Co-OcD) and, in addition, isolated OD species on the CoO terraces (Co-OtD). While the initial step of D2O dissociation is facile, the formation of larger hydroxylated areas is a slow and irreversible process. At 200 K, the formation of hydroxylated areas is accompanied by the co-adsorption of molecular water. The hydroxyl groups on the CoO islands are shown to interact with the CO preadsorbed on the CoO/Pt(111) model system. In particular, we observe a new CO species, stabilized by OD groups on the CoO islands, which adsorbs much stronger than CO on the OD-free CoO surface.

Type
Invited Article
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Henderson, M.A.: The interaction of water with solid surfaces: Fundamental aspects revisited. Surf. Sci. Rep. 46, 1 (2002).CrossRefGoogle Scholar
Kandalkar, S.G., Gunjakar, J.L., and Lokhande, C.D.: Preparation of cobalt oxide thin films and its use in supercapacitor application. Appl. Surf. Sci. 254, 5540 (2008).CrossRefGoogle Scholar
Wang, H-Y., Hung, S-F., Chen, H-Y., Chan, T-S., Chen, H.M., and Liu, B.: In operando identification of geometrical-site-dependent water oxidation activity of spinel Co3O4. J. Am. Chem. Soc. 138, 36 (2016).CrossRefGoogle ScholarPubMed
Liang, Y., Li, Y., Wang, H., Zhou, J., Wang, J., Regier, T., and Dai, H.: Co3O4 nanocrystals on graphene as a synergistic catalyst for oxygen reduction reaction. Nat. Mater. 10, 780 (2011).CrossRefGoogle Scholar
Xie, X., Li, Y., Liu, Z-Q., Haruta, M., and Shen, W.: Low-temperature oxidation of CO catalysed by Co3O4 nanorods. Nature 458, 746 (2009).CrossRefGoogle Scholar
Kumar, N., Jothimurugesan, K., Stanley, G.G., Schwartz, V., and Spivey, J.J.: In situ FT-IR study on the effect of cobalt precursors on CO adsorption behavior. J. Phys. Chem. C 115, 990 (2011).CrossRefGoogle Scholar
Thormählen, P., Skoglundh, M., Fridell, E., and Andersson, B.: Low-temperature CO oxidation over platinum and cobalt oxide catalysts. J. Catal. 188, 300 (1999).CrossRefGoogle Scholar
Cunningham, D.A.H., Kobayashi, T., Kamijo, N., and Haruta, M.: Influence of dry operating conditions: Observation of oscillations and low temperature CO oxidation over Co3O4 and Au/Co3O4 catalysts. Catal. Lett. 25, 257 (1994).CrossRefGoogle Scholar
Liao, L., Zhang, Q., Su, Z., Zhao, Z., Wang, Y., Li, Y., Lu, X., Wei, D., Feng, G., Yu, Q., Cai, X., Zhao, J., Ren, Z., Fang, H., Robles-Hernandez, F., Baldelli, S., and Bao, J.: Efficient solar water-splitting using a nanocrystalline CoO photocatalyst. Nat. Nanotechnol. 9, 69 (2013).CrossRefGoogle ScholarPubMed
Rosen, J., Hutchings, G.S., and Jiao, F.: Ordered mesoporous cobalt oxide as highly efficient oxygen evolution catalyst. J. Am. Chem. Soc. 135, 4516 (2013).CrossRefGoogle ScholarPubMed
Yamada, Y., Yano, K., Hong, D., and Fukuzumi, S.: LaCoO3 acting as an efficient and robust catalyst for photocatalytic water oxidation with persulfate. Phys. Chem. Chem. Phys. 14, 5753 (2012).CrossRefGoogle ScholarPubMed
Willinger, E., Massué, C., Schlögl, R., and Willinger, M.G.: Identifying key structural features of IrOx water splitting catalysts. J. Am. Chem. Soc. 139, 12093 (2017).CrossRefGoogle ScholarPubMed
Cheng, J., Zhang, H., Chen, G., and Zhang, Y.: Study of IrxRu1−xO2 oxides as anodic electrocatalysts for solid polymer electrolyte water electrolysis. Electrochim. Acta 54, 6250 (2009).CrossRefGoogle Scholar
Fester, J., Garcia-Melchor, M., Walton, A.S., Bajdich, M., Li, Z., Lammich, L., Vojvodic, A., and Lauritsen, J.V.: Edge reactivity and water-assisted dissociation on cobalt oxide nanoislands. Nat. Commun. 8, 14169 (2017).CrossRefGoogle ScholarPubMed
Ullman, A.M., Brodsky, C.N., Li, N., Zheng, S-L., and Nocera, D.G.: Probing edge site reactivity of oxidic cobalt water oxidation catalysts. J. Am. Chem. Soc. 138, 4229 (2016).CrossRefGoogle ScholarPubMed
Kanan, M.W., Yano, J., Surendranath, Y., Dincă, M., Yachandra, V.K., and Nocera, D.G.: Structure and valency of a cobalt–phosphate water oxidation catalyst determined by in situ X-ray spectroscopy. J. Am. Chem. Soc. 132, 13692 (2010).CrossRefGoogle ScholarPubMed
Du, P., Kokhan, O., Chapman, K.W., Chupas, P.J., and Tiede, D.M.: Elucidating the domain structure of the cobalt oxide water splitting catalyst by X-ray pair distribution function analysis. J. Am. Chem. Soc. 134, 11096 (2012).CrossRefGoogle ScholarPubMed
Ling, T., Yan, D-Y., Jiao, Y., Wang, H., Zheng, Y., Zheng, X., Mao, J., Du, X-W., Hu, Z., Jaroniec, M., and Qiao, S-Z.: Engineering surface atomic structure of single-crystal cobalt (II) oxide nanorods for superior electrocatalysis. Nat. Commun. 7, 12876 (2016).CrossRefGoogle ScholarPubMed
Song, F. and Hu, X.: Exfoliation of layered double hydroxides for enhanced oxygen evolution catalysis. Nat. Commun. 5, 4477 (2014).CrossRefGoogle ScholarPubMed
Huang, J., Chen, J., Yao, T., He, J., Jiang, S., Sun, Z., Liu, Q., Cheng, W., Hu, F., Jiang, Y., Pan, Z., and Wei, S.: CoOOH nanosheets with high mass activity for water oxidation. Angew. Chem. Int. Ed. 54, 8722 (2015).CrossRefGoogle ScholarPubMed
Ketteler, G., Yamamoto, S., Bluhm, H., Andersson, K., Starr, D.E., Ogletree, D.F., Ogasawara, H., Nilsson, A., and Salmeron, M.: The nature of water nucleation sites on TiO2(110) surfaces revealed by ambient pressure X-ray photoelectron spectroscopy. J. Phys. Chem. C 111, 8278 (2007).CrossRefGoogle Scholar
Kimmel, G.A., Baer, M., Petrik, N.G., VandeVondele, J., Rousseau, R., and Mundy, C.J.: Polarization- and azimuth-resolved infrared spectroscopy of water on TiO2(110): Anisotropy and the hydrogen-bonding network. J. Phys. Chem. Lett. 3, 778 (2012).CrossRefGoogle ScholarPubMed
Balajka, J., Aschauer, U., Mertens, S.F.L., Selloni, A., Schmid, M., and Diebold, U.: Surface structure of TiO2 rutile (011) exposed to liquid water. J. Phys. Chem. C 121, 26424 (2017).CrossRefGoogle ScholarPubMed
Diebold, U.: Perspective: A controversial benchmark system for water-oxide interfaces: H2O/TiO2(110). J. Chem. Phys. 147, 040901 (2017).CrossRefGoogle Scholar
He, Y., Tilocca, A., Dulub, O., Selloni, A., and Diebold, U.: Local ordering and electronic signatures of submonolayer water on anatase TiO2(101). Nat. Mater. 8, 585 (2009).CrossRefGoogle Scholar
Noei, H., Qiu, H., Wang, Y., Löffler, E., Wöll, C., and Muhler, M.: The identification of hydroxyl groups on ZnO nanoparticles by infrared spectroscopy. Phys. Chem. Chem. Phys. 10, 7092 (2008).CrossRefGoogle ScholarPubMed
Meyer, B., Marx, D., Dulub, O., Diebold, U., Kunat, M., Langenberg, D., and Wöll, C.: Partial dissociation of water leads to stable superstructures on the surface of zinc oxide. Angew. Chem., Int. Ed. 43, 6641 (2004).CrossRefGoogle ScholarPubMed
Dementyev, P., Dostert, K-H., Ivars-Barceló, F., O’Brien, C.P., Mirabella, F., Schauermann, S., Li, X., Paier, J., Sauer, J., and Freund, H-J.: Water interaction with iron oxides. Angew. Chem., Int. Ed. 54, 13942 (2015).CrossRefGoogle ScholarPubMed
Mirabella, F., Zaki, E., Ivars-Barcelo, F., Li, X., Paier, J., Sauer, J., Shaikhutdinov, S., and Freund, H-J.: Cooperative formation of long-range ordering in water ad-layers on Fe3O4(111) surfaces. Angew. Chem. 57, 1409 (2018).CrossRefGoogle Scholar
Li, X. and Paier, J.: Adsorption of water on the Fe3O4(111) surface: Structures, stabilities, and vibrational properties studied by density functional theory. J. Phys. Chem. C 120, 1056 (2016).CrossRefGoogle Scholar
Rim, K.T., Eom, D., Chan, S-W., Flytzani-Stephanopoulos, M., Flynn, G.W., Wen, X-D., and Batista, E.R.: Scanning tunneling microscopy and theoretical study of water adsorption on Fe3O4: Implications for catalysis. J. Am. Chem. Soc. 134, 18979 (2012).CrossRefGoogle ScholarPubMed
Leist, U., Ranke, W., and Al-Shamery, K.: Water adsorption and growth of ice on epitaxial Fe3O4(111), FeO(111), and Fe2O3(biphase). Phys. Chem. Chem. Phys. 5, 2435 (2003).CrossRefGoogle Scholar
Meier, M., Hulva, J., Jakub, Z., Pavelec, J., Setvin, M., Bliem, R., Schmid, M., Diebold, U., Franchini, C., and Parkinson, G.S.: Water agglomerates on Fe3O4(001). Proc. Natl. Acad. Sci. USA 115, E5642 (2018).CrossRefGoogle Scholar
Wang, W., Zhang, H., Wang, W., Zhao, A., Wang, B., and Hou, J.G.: Observation of water dissociation on nanometer-sized FeO islands grown on Pt(111). Chem. Phys. Lett. 500, 76 (2010).CrossRefGoogle Scholar
Daschbach, J.L., Dohnálek, Z., Liu, S-R., Smith, R.S., and Kay, B.D.: Water adsorption, desorption, and clustering on FeO(111). J. Phys. Chem. B 109, 10362 (2005).CrossRefGoogle Scholar
Joseph, Y., Kuhrs, C., Ranke, W., Ritter, M., and Weiss, W.: Adsorption of water on FeO(111) and Fe3O4(111): Identification of active sites for dissociation. Chem. Phys. Lett. 314, 195 (1999).CrossRefGoogle Scholar
Schwarz, M., Faisal, F., Mohr, S., Hohner, C., Werner, K., Xu, T., Skála, T., Tsud, N., Prince, K.C., Matolín, V., Lykhach, Y., and Libuda, J.: Structure-dependent dissociation of water on cobalt oxide. J. Phys. Chem. Lett. 9, 2763 (2018).CrossRefGoogle ScholarPubMed
Schwarz, M., Mohr, S., Hohner, C., Werner, K., Xu, T., and Libuda, J.: Water on atomically-defined cobalt oxide surfaces studied by temperature-programmed IR reflection absorption spectroscopy and steady state isotopic exchange. J. Phys. Chem. C Article ASAP (2018) doi: https://doi.org/10.1021/acs.jpcc.8b04611.Google Scholar
Fester, J., Sun, Z., Rodriguez-Fernandez, J., Walton, A., and Lauritsen, J.V.: Phase transitions of cobalt oxide bilayers on Au(111) and Pt(111): The role of edge sites and substrate interactions. J. Phys. Chem. B 122, 561 (2018).CrossRefGoogle ScholarPubMed
Fester, J., Bajdich, M., Walton, A.S., Sun, Z., Plessow, P.N., Vojvodic, A., and Lauritsen, J.V.: Comparative analysis of cobalt oxide nanoisland stability and edge structures on three related noble metal surfaces: Au(111), Pt(111), and Ag(111). Top. Catal. 60, 503 (2017).CrossRefGoogle Scholar
Fester, J., Walton, A., Li, Z., and Lauritsen, J.V.: Gold-supported two-dimensional cobalt oxyhydroxide (CoOOH) and multilayer cobalt oxide islands. Phys. Chem. Chem. Phys. 19, 2425 (2017).CrossRefGoogle ScholarPubMed
Walton, A.S., Fester, J., Bajdich, M., Arman, M.A., Osiecki, J., Knudsen, J., Vojvodic, A., and Lauritsen, J.V.: Interface controlled oxidation states in layered cobalt oxide nanoislands on gold. ACS Nano 9, 2445 (2015).CrossRefGoogle ScholarPubMed
Ferstl, P., Mehl, S., Arman, M.A., Schuler, M., Toghan, A., Laszlo, B., Lykhach, Y., Brummel, O., Lundgren, E., Knudsen, J., Hammer, L., Schneider, M.A., and Libuda, J.: Adsorption and activation of CO on Co3O4(111) thin films. J. Phys. Chem. C 119, 16688 (2015).CrossRefGoogle Scholar
Xu, T., Schwarz, M., Werner, K., Mohr, S., Amende, M., and Libuda, J.: The surface structure matters: Thermal stability of phthalic acid anchored to atomically-defined cobalt oxide films. Phys. Chem. Chem. Phys. 18, 10419 (2016).CrossRefGoogle ScholarPubMed
Giovanardi, C., Hammer, L., and Heinz, K.: Ultrathin cobalt oxide films on Ir(100) − (1 × 1). Phys. Rev. B 74, 125429-1 (2006).CrossRefGoogle Scholar
Gubo, M., Ebensperger, C., Meyer, W., Hammer, L., and Heinz, K.: Substoichiometric cobalt oxide monolayer on Ir(100) − (1 × 1). J. Phys.: Condens. Matter 21, 474211 (2009).Google Scholar
Heinz, K. and Hammer, L.: Epitaxial cobalt oxide films on Ir(100)-the importance of crystallographic analyses. J. Phys.: Condens. Matter 25, 173001 (2013).Google ScholarPubMed
Biedermann, K., Gubo, M., Hammer, L., and Heinz, K.: Phases and phase transitions of hexagonal cobalt oxide films on Ir(100) − (1 × 1). J. Phys.: Condens. Matter 21, 185003 (2009).Google Scholar
Merte, L.R., Knudsen, J., Grabow, L.C., Vang, R.T., Lægsgaard, E., Mavrikakis, M., and Besenbacher, F.: Correlating STM contrast and atomic-scale structure by chemical modification: Vacancy dislocation loops on FeO/Pt(111). Surf. Sci. 603, L15 (2009).CrossRefGoogle Scholar
Weng, X., Zhang, K., Pan, Q., Martynova, Y., Shaikhutdinov, S., and Freund, H-J.: Support effects on CO oxidation on metal-supported ultrathin FeO(1 1 1) films. ChemCatChem 9, 705 (2017).CrossRefGoogle Scholar
Daschbach, J.L., Peden, B.M., Smith, R.S., and Kay, B.D.: Adsorption, desorption, and clustering of H2O on Pt(111). J. Chem. Phys. 120, 1516 (2004).CrossRefGoogle Scholar
Picolin, A., Busse, C., Redinger, A., Morgenstern, M., and Michely, T.: Desorption of H2O from flat and stepped Pt(111). J. Phys. Chem. C 113, 691 (2009).CrossRefGoogle Scholar
Fisher, G.B. and Gland, J.L.: The interaction of water with the Pt(111) surface. Surf. Sci. 94, 446 (1980).CrossRefGoogle Scholar
Petrik, N.G., Kimmel, G.A.: Electronstimulated reactions in thin D2O films on Pt(111) mediated by electron trapping. J. Chem. Phys. 121, 3727 (2004).CrossRefGoogle ScholarPubMed
Fujimori, Y., Zhao, X., Shao, X., Levchenko, S.V., Nilius, N., Sterrer, M., and Freund, H-J.: Interaction of water with the CaO(001) surface. J. Phys. Chem. C 120, 5565 (2016).CrossRefGoogle Scholar
Merte, L.R., Peng, G., Bechstein, R., Rieboldt, F., Farberow, C.A., Grabow, L.C., Kudernatsch, W., Wendt, S., Laegsgaard, E., Mavrikakis, M., and Besenbacher, F.: Water-mediated proton hopping on an iron oxide surface. Science 336, 889 (2012).CrossRefGoogle ScholarPubMed
Hoffmann, F.M.: Infrared reflection-absorption spectroscopy of adsorbed molecules. Surf. Sci. Rep. 3, 107 (1983).CrossRefGoogle Scholar
Gajdos, M., Eichler, A., and Hafner, J.: CO adsorption on close-packed transition and noble metal surfaces: Trends from ab initio calculations. J. Phys.: Condens. Matter 16, 1141 (2004).Google Scholar
Sun, Y-N., Qin, Z-H., Lewandowski, M., Carrasco, E., Sterrer, M., Shaikhutdinov, S., and Freund, H-J.: Monolayer iron oxide film on platinum promotes low temperature CO oxidation. J. Catal. 266, 359 (2009).CrossRefGoogle Scholar
Carrasco, E., Aumer, A., Brown, M.A., Dowler, R., Palacio, I., Song, S., and Sterrer, M.: Infrared spectra of high coverage CO adsorption structures on Pt(111). Surf. Sci. 604, 1320 (2010).CrossRefGoogle Scholar
Persson, B.N.J., Tüshaus, M., and Bradshaw, A.M.: On the nature of dense CO adlayers. J. Chem. Phys. 92, 5034 (1990).CrossRefGoogle Scholar
Tüshaus, M., Schweizer, E., Hollins, P., and Bradshaw, A.M.: Yet another vibrational study of the adsorption system Pt{111}-CO. J. Electron Spectrosc. Relat. Phenom. 44, 305 (1987).CrossRefGoogle Scholar
Spoto, G., Gribov, E.N., Ricchiardi, G., Damin, A., Scarano, D., Bordiga, S., Lamberti, C., and Zecchina, A.: Carbon monoxide MgO from dispersed solids to single crystals: A review and new advances. Prog. Surf. Sci. 76, 71 (2004).CrossRefGoogle Scholar
Li, X., Paier, J., Sauer, J., Mirabella, F., Zaki, E., Ivars-Barcelo, F., Shaikhutdinov, S., and Freund, H-J.: Surface termination of Fe3O4(111) films studied by CO adsorption revisited. J. Phys. Chem. B 122, 527 (2018).CrossRefGoogle ScholarPubMed
Olsen, C.W. and Masel, R.I.: An infrared study of CO adsorption on Pt(111). Surf. Sci. 201, 444 (1988).CrossRefGoogle Scholar
Scarano, D., Spoto, G., Bordiga, S., Coluccia, S., and Zecchina, A.: CO adsorption at 77 K on CoO/MgO and NiO/MgO solid solutions: A fourier-transform infrared study. J. Chem. Soc., Faraday Trans. 88, 291 (1992).CrossRefGoogle Scholar
Supplementary material: Image

Wähler et al. supplementary material

Wähler et al. supplementary material 1

Download Wähler et al. supplementary material(Image)
Image 9.9 MB
Supplementary material: Image

Wähler et al. supplementary material

Wähler et al. supplementary material 2

Download Wähler et al. supplementary material(Image)
Image 6.3 MB