Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-09T20:17:47.015Z Has data issue: false hasContentIssue false

Disordering behavior and helium diffusion in He+ irradiated 6H–SiC

Published online by Cambridge University Press:  31 January 2011

W. Jiang*
Affiliation:
Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99352
W. J. Weber
Affiliation:
Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99352
C. M. Wang
Affiliation:
Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99352
Y. Zhang
Affiliation:
Division of Ion Physics, Ångström Laboratory, Uppsala University, Box 534, SE-751 21, Sweden
*
a) Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Single-crystal 6H–SiC wafers were irradiated at 300 K with 50 keV He+ ions to fluences ranging from 7.5 to 250 He+/nm2. Ion-channeling experiments with 2.0 MeV He+ Rutherford backscattering spectrometry were performed to determine the depth profile of Si disorder. The measured profiles are consistent with SRIM-97 simulations at and below 45 He+/nm2 but higher than the SRIM-97 prediction at both 100 and 150 He+/nm2. Cross-sectional transmission electron microscopy study indicated that the volume expansion of the material is not significant at intermediate damage levels. Results from elastic recoil detection analysis suggested that the implanted He atoms diffuse in a high-damage regime toward the surface.

Type
Rapid Communications
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Fenici, P., Rebelo, A.J. Frias, Jones, R.H., Kohyama, A., and Snead, L.L., J. Nucl. Mater. 258–263, 215 (1998).CrossRefGoogle Scholar
2.Kim, B.G., Choi, Y., Lee, J.W., Lee, Y.W., Sohn, D.S., and Kim, G.M., J. Nucl. Mater. 281, 163 (2000).CrossRefGoogle Scholar
3.Raynaud, C., J. Non-Cryst. Sol. 280, 1 (2001).CrossRefGoogle Scholar
4.Jiang, W. and Weber, W.J., Phys. Rev. B 64, 125206–1 (2001).CrossRefGoogle Scholar
5.Paszti, F., Nucl. Instrum. Methods Phys. Res. B 66, 83 (1992).CrossRefGoogle Scholar
6.Zhang, Y., Possnert, G., Jonsson, L., Winzell, T., and Whitlow, H.J., Jpn. J. Appl. Phys. 40, 629 (2001).CrossRefGoogle Scholar
7.Jiang, W., Thevuthasan, S., Weber, W.J., and Grötzschel, R., Nuclear Instrum. Methods Phys. Res. B 161–163, 501 (2000).CrossRefGoogle Scholar
8.Jiang, W., Weber, W.J., Thevuthasan, S., and McCready, D.E., J. Nucl. Mater. 257, 295 (1998).CrossRefGoogle Scholar
9.Jiang, W., Weber, W.J., Thevuthasan, S., and Grötzschel, R., Nuclear Instrum. Methods Phys. Res. B 166–167, 374 (2000).CrossRefGoogle Scholar
10.Swanson, M.L., in Handbook of Modern Ion Beam Materials Analysis, edited by Tesmer, J.R. and Nastasi, M. (Materials Research Society, Pittsburgh, PA, 1995), p. 267.Google Scholar
11.Williams, J.S. and Elliman, R.G., in Ion Beams for Materials Analysis, edited by Bird, J.R. and Williams, J.S. (Academic Press, San Diego, CA, 1989), p. 286.Google Scholar
12.Ziegler, J.F., http://www.SRIM.org/.Google Scholar
13.Devanathan, R., Rubia, T. Diaz de la, and Weber, W.J., J. Nucl. Mater. 253, 47 (1998).CrossRefGoogle Scholar
14.Weber, W.J., Nucl. Instrum. Methods Phys. Res. B 166–167, 98 (2000).CrossRefGoogle Scholar
15.Weber, W.J., Yu, N., Wang, L.M., and Hess, N.J., J. Nucl. Mater. 244, 258 (1997).CrossRefGoogle Scholar
16.Ullersma, E.H.C., Ullersma, P., and Habraken, F.H.P.M., Phys. Rev. B 61, 10133 (2000).CrossRefGoogle Scholar