Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-10T21:13:59.406Z Has data issue: false hasContentIssue false

Dislocation structure of low-angle grain boundaries in YBa2Cu3O7−δ/MgO films

Published online by Cambridge University Press:  31 January 2011

S. Oktyabrsky
Affiliation:
NYS Center for Advanced Technology, State University of New York at Albany, Albany, New York 12203
R. Kalyanaraman
Affiliation:
Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695-7916
K. Jagannadham
Affiliation:
Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695-7916
J. Narayan
Affiliation:
Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695-7916
Get access

Abstract

Grain boundaries in laser-deposited YBa2Cu3O7−δ (YBCO)/MgO thin films have been investigated by high-resolution transmission electron microscopy. The films exhibit perfect texturing with YBCO(001)/MgO(001) giving rise to low-angle [001] tilt grain boundaries resulting from the grains with the c axis normal to the substrate surface and with misorientation in the a-b plane. The atomic structure of the grain boundaries was analyzed by using a dislocation model. Low-angle grain boundaries have been found to be aligned along (100) and (110) interface planes. For the (110) boundary plane, the low-energy dislocation configuration was found to consist of an array of alternating [100] and [010] dislocations. We have calculated the energy of various configurations and shown that the energy of the (110) boundary with dissociated dislocations is comparable to that of the (100) boundary, which explains the coexistence of (100) and (110) interface facets along the boundary. We have also modeled critical current transport through grain boundaries with various structures and found that the low-energy (110) grain boundary with dissociated dislocation array is expected to transport a lower superconducting current (by 25% for 6° misorientation) than (100) boundaries.

Type
Articles
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Chaudhari, P., Mannhart, J., Dimos, D., Tsuei, C.C., Chi, J., Oprysko, M.M., and Scheuermann, M., Phys. Rev. Lett. 60, 1653 (1988).CrossRefGoogle Scholar
2.Dimos, D., Chaudhari, P., and Mannhart, J., Phys. Rev. B 41, 4038 (1990).CrossRefGoogle Scholar
3.Gross, R. and Mayer, B., Physica C 180, 1 (1991).CrossRefGoogle Scholar
4.Jagannadham, K. and Narayan, J., Phil. Mag. B 61, 129 (1990).CrossRefGoogle Scholar
5.Babcock, S.E., Cai, X.Y., Kaiser, D.L., and Larbalestier, D.C., Nature 347, 167 (1990).Google Scholar
6.Jagannadham, K. and Narayan, J., Mat. Sci. Eng. B 14, 214 (1992).Google Scholar
7.Zhu, Y., Zuo, J.M., Moodenbaught, A.R., and Suenaga, M., Phil. Mag. A 70, 969 (1994).CrossRefGoogle Scholar
8.Browning, N.D., Chisholm, M.F., Pennycook, S.J., Norton, D.P., and Lowndes, D.H., Physica C 212, 185 (1993).CrossRefGoogle Scholar
9.Ivanov, Z.G., Fogel, N., Nilsson, P.A., Stepantsov, E.A., and Tzalenchuk, A., Physica C 235, 3253 (1994).CrossRefGoogle Scholar
10.McKernan, S., Norton, M.G., and Carter, C.B., J. Mater. Res. 7, 1052 (1992).CrossRefGoogle Scholar
11.Browning, N.D., Buban, J.P., Nellist, P.D., Norton, D.P., Chisholm, M.F., and Pennycock, S.J., Physica C 294, 183 (1998).CrossRefGoogle Scholar
12.Ravi, T.S., Hwang, D.M., Ramesh, R., Siu Wai, C., Nazar, L., Chen, C.Y., Inam, A., and Venkatesan, T., Phys. Rev. B 42, 10141 (1990).CrossRefGoogle Scholar
13.Tietz, L.A. and Carter, C.B., Physica C 182, 4 (1991).Google Scholar
14.Sidorov, M.V. and Oktyabrsky, S.R., Phys. Status. Solidi (a) 126, 427 (1991).CrossRefGoogle Scholar
15.Singh, R.K., Bhattacharya, D., Tiwari, P., Narayan, J., and Lee, C.B., Appl. Phys. Lett. 60, 255 (1992).Google Scholar
16.Chisholm, M.F. and Smith, D.A., Phil. Mag. A 59, 181 (1989).CrossRefGoogle Scholar
17.Seo, J.W., Kabius, B., Daehne, U., Scholen, A., and Urban, K., Physica C 245, 1 (1995).CrossRefGoogle Scholar
18.Mironova, M., Du, G., Rusakova, I., and Salama, K., Physica C 271, 1 (1996).CrossRefGoogle Scholar
19.Oktyabrsky, S., Kalyanaraman, R., Jagannadham, K., and Narayan, J., Microscopy Microanalysis 4, Suppl. 2, 676 (1998).CrossRefGoogle Scholar
20.Read, W.T. and Shockley, W., Phys. Rev. 78, 275 (1950).CrossRefGoogle Scholar
21.Hirth, J.P. and Lothe, J., Theory of Dislocations (Krieger Publishing Co., 1992), p. 732.Google Scholar
22.Dimos, D., Chaudhari, P., Mannhart, J., and LeGoues, F.K., Phys. Rev. Lett. 61, 219 (1988).Google Scholar
23.Chisholm, M.F. and Pennycock, S.J., Nature 351, 47 (1991).CrossRefGoogle Scholar
24.Deutscher, G., Physica C 153, 15 (1988).Google Scholar
25.Jagannadham, K. and Narayan, J., Mater. Sci. Eng. B 8, 5 (1991).CrossRefGoogle Scholar
26.de Gennes, P.G., in Superconductivity of Metals and Alloys (W.A. Benjamin, Inc, New York, 1966).Google Scholar
27.Koch, U., Lotter, N., Wittig, J., Assmus, W., Gegenheimer, B., and Winzer, K., Solid State Comm. 67, 959 (1988).CrossRefGoogle Scholar
28.Marwick, A.D., Guarnieri, C.R., and Manoyan, J.M., Appl. Phys. Lett. 53, 2713 (1988).Google Scholar
29.Bucher, B., Kaldis, E., Krueger, C., and Wachter, P., Europhys. Lett. 34, 391 (1996).CrossRefGoogle Scholar
30.Baran, M., Gladczuk, L., Szymczak, H., Dyakonov, V.P., Markovich, V.I., and Fita, I.M., Low Temp. Physics 22, 1360 (1996).Google Scholar