Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-22T20:40:19.021Z Has data issue: false hasContentIssue false

The diffusion of hydrogen in silicon and mechanisms for “unintentional” hydrogenation during ion beam processing

Published online by Cambridge University Press:  31 January 2011

C. H. Seager
Affiliation:
Sandia National Laboratories, Albuquerque, New Mexico 87185
R. A. Anderson
Affiliation:
Sandia National Laboratories, Albuquerque, New Mexico 87185
J. K. G. Panitz
Affiliation:
Sandia National Laboratories, Albuquerque, New Mexico 87185
Get access

Abstract

Experiments are described in which hydrogen is injected into silicon by various techniques and detected by the neutralization of boron acceptor sites. Wet chemical etching is shown to inject protons several microns in a few seconds; this experiment is used to set a lower limit on the diffusivity of hydrogen of ⋍2⊠10−11 cm2/s at 300 K, a number in reasonable agreement with prior estimates deduced by Van Wieririgen and Warmholtz from high-temperature permeation measurements. A number of experiments are reported to elucidate the mechanism for “unintentional” hydrogenation occurring during argon ion bombardment. The data suggest that this effect is caused by bombardment-induced injection of hydrogen from surface H2O/hydrocarbon contaminants.

Type
Articles
Copyright
Copyright © Materials Research Society 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Johnson, N. M., Herring, C., and Chadi, D. J., Phys. Rev. Lett. 56, 769 (1986).CrossRefGoogle Scholar
2Pankove, J. I., Carlson, D. E., Berkeyheiser, J. E., and Wance, R. O., Phys. Rev. Lett. 51, 2224 (1983).Google Scholar
3Pankove, J. I., Wance, R. O., and Berkeyheiser, J. E., Appl. Phys. Lett. 45, 1100 (1984).Google Scholar
4Pankove, J. I., Magee, C. W., and Wance, R. O., Appl. Phys. Lett. 47, 748 (1985).CrossRefGoogle Scholar
5Tavendale, A. J. and Williams, A. A., Appl. Phys. Lett. 48, 590 (1986).Google Scholar
6Johnson, N. M., Appl. Phys. Lett. 47, 874 (1986).CrossRefGoogle Scholar
7Tavendale, A. J., Alexiev, D., and Williams, A. A., Appl. Phys. Lett. 47, 316 (1985).Google Scholar
8Johnson, N. M., Phys. Rev. B 31, 5525 (1985).CrossRefGoogle Scholar
9Hauser, J. J., Solid State Commun. 19, 1049 (1976).Google Scholar
10Zanzucchi, P. J., Wronski, C. R., and Carlson, D. E., J. Appl. Phys. 48, 5227 (1977).Google Scholar
11Pankove, J. I., Lampert, M. A., and Tarng, M. L., Appl. Phys. Lett. 32, 439 (1978).Google Scholar
12Seager, C. H. and Ginley, D. S., Appl. Phys. Lett. 34, 337 (1979).CrossRefGoogle Scholar
13Pankove, J. I. and Tarng, M. L., Appl. Phys. Lett. 32, 439 (1978).CrossRefGoogle Scholar
14Nicollian, E. H., Berglund, C. N., Schmidt, P. F., and Andrews, J. M., J. Appl. Phys. 42, 5654 (1971).CrossRefGoogle Scholar
13Feigl, F. J., Young, D. R., DiMaria, D. J., Lai, S., and Calise, J., J. Appl. Phys. 59, 5665 (1981).CrossRefGoogle Scholar
16Gale, R., Feigl, F. J., Magee, C. W., and Young, D. R., J. Appl. Phys. 54, 6938 (1983).Google Scholar
17Sah, C. T., Chen, J. Y., and Tzou, J. J. T., J. Appl. Phys. 54, 944 (1983).Google Scholar
18Sah, C. T., Pau, S. C., and Hsu, C. C., J. Appl. Phys. 57, 5148 (1985).CrossRefGoogle Scholar
19Pearton, S. J., Tavendale, A. J., Williams, A. A., and Alexiev, D., in the Proceedings of the Electrochemical Society, Boston, Massachusetts 4–9 May 1986, Abstract No. 188, p. 269.Google Scholar
20Schnegg, A., Grunduer, M., and Jacob, H., in Ref. 19, p. 269.Google Scholar
21Cuthrell, R. E. (private communication).Google Scholar
22Johnson, N. M., Biegelsen, D. K., and Moyer, M. D., Appl. Phys. Lett. 40, 882 (1982).CrossRefGoogle Scholar
23Seager, C. H., Sharp, D. J., Panitz, J. K. G., and D'Aiello, R. V., J. Vac. Sci. Technol. 20, 430 (1982).Google Scholar
24Picraux, S. T. and Vook, F. L., Phys. Rev. B 18, 2066 (1978).CrossRefGoogle Scholar
25Magee, C. W., Cohen, J. A., Voss, D. E., and Brice, D. K., Nucl. Instrum. Methods 168, 383 (1980).CrossRefGoogle Scholar
26Jaworowski, A. E., Wielunski, L. S., and Listerman, T. W., Mater. Res. Soc. Symp. Proc. 46, 561 (1985).CrossRefGoogle Scholar
27Mu, X. C., Fonash, S. J., and Singh, K., Appl. Phys. Lett. 49, 67 (1986).CrossRefGoogle Scholar
28Ashok, S. and Giewont, K., Jpn. J. Appl. Phys. 24, C533 (1985).Google Scholar
29Pinto, R. and Babu, R. S., Appl. Phys. Lett. 48, 1427 (1986).Google Scholar
30Seager, C. H. (unpublished data).Google Scholar
31Wieringen, A. Van and Warmholtz, N., Physics 22, 849 (1956).Google Scholar
32Pearton, S. J., in the Proceedings of the 13th International Conference on Defects in Semiconductors, Coronado, California, 12–17 August 1984, edited by Kimerling, L. C. and Parsey, J. M. Jr, . (AIME, New York, 1985), p. 737.Google Scholar
33Hall, R. N., IEEE Trans. Nucl. Sci. NS–31, 320 (1984).CrossRefGoogle Scholar
34Corbett, J. W., Sahu, S. N., and Shi, T. S., Phys. Lett. A 93, 303 (1983).Google Scholar
35Mainwood, A. and Stoneham, A. M., J. Phys. C 17, 2513 (1984).Google Scholar
36Knotek, M. L. and Houston, J. E., J. Vac. Sci. Technol. 20, 544 (1982).CrossRefGoogle Scholar
37DeLeo, G. G., Fowler, W. B., and Watkins, G. D., Phys. Rev. B 29, 1819 (1984).CrossRefGoogle Scholar
38Nielsen, B. Bech, Mater. Res. Soc. Symp. Proc. 59, 487 (1986).Google Scholar
39Butler, M. A. (private communications).Google Scholar
40Pontuschka, W. M., Carlos, W. W., Taylor, P. C., and Griffith, R. W., Phys. Rev. B 25, 4362 (1982).Google Scholar
41Smoluchowski, M. V., Phys. Z. 17, 557 (1916).Google Scholar
42Seager, C. H. (unpublished data).Google Scholar