Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-27T06:36:59.276Z Has data issue: false hasContentIssue false

Diffusion and isotope effect in bulk-metallic glass-forming Pd–Cu–Ni–P alloys from the glass to the equilibrium melt

Published online by Cambridge University Press:  31 January 2011

Volker Zöllmer
Affiliation:
Lehrstuhl für Materialverbunde, Technische Fakultät der Universität Kiel, Kaiserstr. 2, 24143 Kiel, Germany
Klaus Raätzke
Affiliation:
Lehrstuhl für Materialverbunde, Technische Fakultät der Universität Kiel, Kaiserstr. 2, 24143 Kiel, Germany
Franz Faupel*
Affiliation:
Lehrstuhl für Materialverbunde, Technische Fakultät der Universität Kiel, Kaiserstr. 2, 24143 Kiel, Germany
*
b)Address all correspondence to this author. e-mail: [email protected] This author was an editor of this journal during the review and decision stage. For the JMR policy on review and publication of manuscripts authored by editors, please refer to http://www.mrs.org/publications/jmr/policy.html.
Get access

Abstract

We report on radiotracer diffusion measurements in metallic bulk-glass-forming Pd-Cu-Ni-P alloys. The Pd-Cu-Ni-P system, with its high stability against crystallization, allows diffusion measurements from the glassy state to the equilibrium melt for the first time. Serial sectioning was performed by grinding and ion-beam sputtering. The time and temperature as well as mass dependence, expressed in terms of the isotope effect E, of codiffusion were investigated. In the glassy state as well as in the deeply supercooled state below the critical temperature Tc, where the mode-coupling theory predicts a freezing-in of liquidlike motion, the measured very small isotope effects indicated a highly collective hopping mechanism. Below Tc, the temperature dependence showed Arrhenius-type behavior. Above Tc, the onset of liquidlike motion was evidenced by a gradual drop of the effective activation energy, resulting from the decay of hopping barriers, and by the validity of the Stokes-Einstein equation, which was found to break down below Tc. This strongly supports the mode-coupling scenario. Isotope effect measurements, which have never been carried out near Tc in any material, showed atomic transport up to the equilibrium melt to be far away from the hydrodynamic regime of uncorrelated binary collisions. The latter appears to be a prerequisite of excellent glass-forming abilities.

Type
Articles
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Mehrer, H. and Rummel, G., in Diffusion in Amorphous Materials, edited by Jain, H. and Gupte, D. (The Minerals, Metals & Materials Society, Warrendale, PA, 1994), p. 163.Google Scholar
2.Kronmüller, H., in Springer Series in Material Science, edted by Otooni, M.A. (Springer-Verlag, Berlin, Germany, 1998).Google Scholar
3.Faupel, F., Frank, W., Macht, M-P., Mehrer, H., Naundorf, V., Rätzke, K., Schober, H.R., Sharma, S.K., and Teichler, H., Rev. Mod. Phys. 75, 237 (2003).Google Scholar
4.Cummins, H.Z., Li, G., Hwang, Y.H., Shen, G.Q., Du, W.M., Hernandez, J., and Tao, N.J., Z. Phys. B 103, 501 (1997).CrossRefGoogle Scholar
5.Meyer, A., Wuttke, J., Petry, W., Randl, O.G., and Schober, H., Phys. Rev. Lett. 80, 4454 (1998).Google Scholar
6.Meyer, A., Busch, R., and Schober, H., Phys. Rev. Lett. 83, 5027 (1999).Google Scholar
7.Ediger, M.D., Annu. Rev. Phys. Chem. 51, 99 (2000).Google Scholar
8.Schober, H.R., Oligschleger, C., and Laird, B.B., J. Non-Cryst. Solids 156–158, 965 (1993).Google Scholar
9.Schober, H.R., Gaukel, C., and Oligschleger, C., Prog. Theor. Phys. Suppl. 126, 67 (1997).CrossRefGoogle Scholar
10.Donati, C., Douglas, J.F., Kob, W., Plimpton, S.J., Poole, P.H., and Glotzer, S.C., Phys. Rev. Lett. 80, 2338 (1998).CrossRefGoogle Scholar
11.Oligschleger, C. and Schober, H.R., Phys. Rev. B 59, 811 (1999).Google Scholar
12.Teichler, H., Phys. Rev. Lett. 76, 62 (1996).Google Scholar
13.Greer, A.L., Nature 366, 303 (1999).CrossRefGoogle Scholar
14.Tang, X-P., Geyer, U., Busch, R., Johnson, W.L., and Wu, Y., Nature 402, 160 (1999).Google Scholar
15.Loirat, Y., Bocquet, J.L., and Limoge, Y., J. Non-Cryst. Solids 265, 252 (2000).CrossRefGoogle Scholar
16.Sharma, S.K., Macht, M-P., and Naundorf, V., Phys. Rev. B 49, 6655 (1994).CrossRefGoogle Scholar
17.Faupel, F., Hüppe, P.W., and Rätzke, K., Phys. Rev. Lett. 65, 1219 (1990).Google Scholar
18.Ehmler, H., Heesemann, A., Rätzke, K., and Faupel, F., Phys. Rev. Lett. 80, 4919 (1998).CrossRefGoogle Scholar
19.Heesemann, A., Zöllmer, V., Rätzke, K., and Faupel, F., Phys. Rev. Lett. 84, 1467 (2000).Google Scholar
20.Heesemann, A., Rätzke, K., Zöllmer, V., and Faupel, F., N. J. Phys. 3, 6.1 (2001).Google Scholar
21.Zöllmer, V., Ehmler, H., Rätzke, K., Troche, P., and Faupel, F., Europhys. Lett. 51, 75 (2000).Google Scholar
22.Teichler, H., Def. Diff. Forum 143–147, 717 (1997).Google Scholar
23.Rätzke, K., Hüppe, P.W., and Faupel, F., Phys. Rev. Lett. 68, 2347 (1992).Google Scholar
24.Knorr, K., Macht, M-P., and Mehrer, H., in Bulk Metallic Glasses, edited by Johnson, W.L., Inoue, A., and Liu, C.T. (Mater. Res. Soc. Symp. Proc. 554, Warrendale, PA, 1999), p. 269.Google Scholar
25.Fielitz, P., Macht, M-P., Naundorf, V., and Frohberg, G., J. NonCryst. Solids 250–252, 674 (1999).CrossRefGoogle Scholar
26.Zumkley, T., Naundorf, V., and Macht, M-P., Z. Metallkd. 91, 901 (2000).Google Scholar
27.Geyer, U., Schneider, S., Johnson, W.L., Qiu, Y., Tombrello, T.A., and Macht, M-P., Phys. Rev. Lett. 75, 2364 (1995).Google Scholar
28.Zumkley, T., Naundorf, V., Macht, M-P., and Frohberg, G., Ann. Chim. 27, 55 (2002).Google Scholar
29.Götze, W. and Sjögren, L., Rep. Progr. Phys. 55, 241 (1992).CrossRefGoogle Scholar
30.Götze, W. and Sjögren, L., Transp. Theory Statist. Phys. 24, 801 (1995).CrossRefGoogle Scholar
31.Götze, W., J. Phys. 11, A1 (1999).Google Scholar
32.Adda, Y. and Phillibert, J., La Diffusion dans les Solides (Press Universitaires de Frances, Paris, France, 1966).Google Scholar
33.Mehrer, H., in Numerical Data and Functional Relationships in Science and Technology, edited by Landold-Börnstein, (New Series Group III, Springer-Verlag, Berlin, Germany, 1990).Google Scholar
34.Rätzke, K., Heesemann, A., and Faupel, F., J. Phys.: Cond. Matter 7, 7663 (1995).Google Scholar
35.Zöllmer, V., Rätzke, K., Faupel, F., Rehmet, A., and Geyer, U., Phys. Rev. B 65, 220201–1 (2002).Google Scholar
36.Zöllmer, V., Rätzke, K., Meyer, A., and Faupel, F., Phys. Rev. Lett. 90, 195502–1 (2003).Google Scholar
37.Meyer, A., Phys. Rev B 66, 134205–1 (2002).Google Scholar
38.Faupel, F., Hüppe, P.W., Rätzke, K., Willecke, R., and Hehenkamp, T., J. Vac. Sci. Technol. A 10, 92 (1992).Google Scholar
39.Schroers, J., Johnson, W.L., and Busch, R., Appl. Phys. Lett. 77, 1158 (2000).Google Scholar
40.Zöllmer, V., Ph.D. Thesis, (University of Kiel, Shaker-Verlag, Aachen, Germany, 2002).Google Scholar
41.Inoue, A., Mat. Sci. Forum 179–181, 691 (1995).Google Scholar
42.Lu, I-R., Wilde, G., Görler, G.P., and Willnecker, R., J. Non-Cryst. Solids 250–252, 577 (1999).Google Scholar
43.Mundy, J.N., Tse, C.W., and McFall, W.D., Phys. Rev B 13, 2349 (1975).Google Scholar
44.Ehmler, H., Rehmet, A., Rätzke, K., and Faupel, F., Def. Diff. Forum 203–205, 147 (2002).Google Scholar
45.Zumkley, T., Naundorf, V., Macht, M-P., and Frohberg, G., Def. Diff. Forum 194–199, 801 (2001).Google Scholar
46.Frohberg, G., Def. Diff. Forum, 143–147, 869 (1997).Google Scholar
47.Frohberg, G., Kraatz, K-H., and Wever, H., Mater. Sci. Forum 15–18, 529 (1987).Google Scholar
48.Kluge, M. and Schober, H.R., Phys. Rev. E 62, 597 (2000).Google Scholar
49.Lu, I-R., Görler, G.P., Fecht, H.J., and Willnecker, R., J. Non-Cryst. Solids 312–314, 547 (2002).Google Scholar
50.Haumesser, H., Bancillon, J., Daniel, M., Garandet, J.P., Barbe, J.C., and Kernevez, N., Int. J. Thermophys. 23, 1217 (2002).CrossRefGoogle Scholar