Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-22T22:28:01.795Z Has data issue: false hasContentIssue false

Dielectric relaxation and microwave loss in the La(Mg1/2Ti1/2)O3–(Na1/2Bi1/2)TiO3 perovskite ceramics

Published online by Cambridge University Press:  31 January 2011

A.N. Salak*
Affiliation:
Department of Ceramics and Glass Engineering / Center for Research in Ceramics and Composite Materials (CICECO), University of Aveiro, 3810-193 Aveiro, Portugal
V.M. Ferreira
Affiliation:
Department of Civil Engineering / Center for Research in Ceramics and Composite Materials (CICECO), University of Aveiro, 3810-193 Aveiro, Portugal
L.G. Vieira
Affiliation:
Department of Physics, University of Minho, 4710-057 Braga, Portugal
J.L. Ribeiro
Affiliation:
Department of Physics, University of Minho, 4710-057 Braga, Portugal
R.C. Pullar
Affiliation:
Centre for Physical Electronics and Materials, Faculty of Engineering, Science and the Built Environment, London South Bank University, London SE1 0AA, United Kingdom
N.McN. Alford
Affiliation:
Centre for Physical Electronics and Materials, Faculty of Engineering, Science and the Built Environment, London South Bank University, London SE1 0AA, United Kingdom
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Dielectric response of the perovskite ceramics (1–x)La(Mg1/2Ti1/2)O3x(Na1/2Bi1/2)TiO3 [(1–x)LMT–xNBT] (0 ⩽ x ⩽ 0.6) has been characterized at radio, microwave, and far infrared frequency ranges. Temperature variations of the dielectric permittivity and loss estimated by different methods were compared and analyzed. It was revealed that the low temperature dielectric response of the compositions with x ⩾ 0.2 is frequency-dependent over a wide range (102–109 Hz) below the resonant frequencies of the polar phonon modes. Contributions of different factors (both extrinsic and intrinsic) to the microwave dielectric loss of the ceramics were considered. The dielectric relaxation has been associated with the amount of bismuth in the system. The relaxation in LMT–NBT was considered in the context of similar effects observed in other Bi-containing, A-site disordered oxygen-octahedral compositions.

Type
Articles
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Vanderah, T.A.: Talking ceramics. Science 298, 1182 2002Google Scholar
2Tagantsev, A.K., Sherman, V.O., Astafiev, K.F., Venkatesh, J.Setter, N.: Ferroelectric materials for microwave tunable applications. J. Electroceram. 11, 5 2003Google Scholar
3Bhalla, A.S., Guo, R.Roy, R.: The perovskite structure–A review of its role in ceramic science and technology. Mater. Res. Innovat. 4, 3 2000CrossRefGoogle Scholar
4Goodenough, J.B.: Electronic and ionic-transport properties and other physical properties of perovskites. Rep. Prog. Phys. 67, 1915 2004CrossRefGoogle Scholar
5Wersing, W.: High frequency ceramic dielectrics and their application for microwave components in Electronic Ceramics edited by B.C.H. Steele Elsevier Science Publishing Co., Inc. London and New York 1991 99–100Google Scholar
6Valant, M., Suvorov, D., Hoffmann, C.Sommariva, H.: Ag(Nb,Ta)O3-based ceramics with suppressed temperature dependence of permittivity. J. Eur. Ceram. Soc. 21, 2647 2001CrossRefGoogle Scholar
7Harrop, P.J.: Temperature coefficients of capacitance of solids. J. Mater. Sci. 4, 370 1969Google Scholar
8Petzelt, J.Setter, N.: Far infrared spectroscopy and origin of microwave losses in low-loss ceramics. Ferroelectrics 150, 89 1993Google Scholar
9Reaney, I.M., Wise, P., Ubic, R., Breeze, J., Alford, N.McN., Iddles, D., Cannel, D.Price, T.: On the temperature coefficient of resonant frequency in microwave dielectrics. Philos. Mag. A 81, 501 2001Google Scholar
10Salak, A.N., Seabra, M.P., Ferreira, V.M., Ribeiro, J.L.Vieira, L.G.: Dielectric characterization of the (1–x)La(Mg1/2Ti1/2) O3xBaTiO3 microwave ceramics. J. Phys. D: Appl. Phys. 37, 914 2004Google Scholar
11Salak, A.N., Vyshatko, N.P., Kholkin, A.L., Ferreira, V.M., Olekhnovich, N.M., Radyush, Yu.V.Pushkarev, A.V.: Processing and characterization of (1–x)(Na1/2Bi1/2)TiO3xLa (Mg1/2Ti1/2)O3 ceramics. Mater. Sci. Forum 514–516, 250 2006Google Scholar
12Salak, A.N.Ferreira, V.M.: Structure and dielectric properties of the (1–x)La(Mg1/2Ti1/2)O3x(Na1/2Bi1/2)TiO3 microwave ceramics. J. Phys.: Condens. Matter 18, 5703 2006Google Scholar
13Suchanicz, J., Jezowski, A.Poprawski, R.: Low-temperature thermal and dielectric properties of Na1/2Bi1/2TiO3. Phys. Status Solidi A 169, 209 1998Google Scholar
14Roleder, K., Franke, I., Glazer, A.M., Thomas, P.A., Miga, S.Suchanicz, J.: The piezoelectric effect in Na1/2Bi1/2TiO3 ceramics. J. Phys.: Condens. Matter 14, 5399 2002Google Scholar
15Petzelt, J., Kamba, S., Fabry, J., Porokhonskyy, V., Pashkin, A., Franke, I., Roleder, K., Suchanicz, J., Klein, R.Kugel, G.E.: Infrared, Raman and high-frequency dielectric spectroscopy and phase transitions in Na1/2Bi1/2TiO3. J. Phys.: Condens. Matter 16, 2719 2004Google Scholar
16Hakki, B.W.Coleman, P.D.: A dielectric resonator method of measuring inductive capacities in the millimeter range. IRE Trans. Microwave Theory Tech. 8, 402 1960Google Scholar
17Kobayashi, Y.Katoh, M.: Microwave measurements of dielectric properties of low-loss materials by the dielectric rod resonator method. IEEE Trans. Microwave Theory Tech. 33, 586 1985CrossRefGoogle Scholar
18Berreman, D.W.Unterwald, F.C.: Adjusting poles and zeros of dielectric dispersion to fit reststrahlen of PrCl3 and LaCl3. Phys. Rev. 174, 791 1968Google Scholar
19Penn, S.J., Alford, N.McN., Templeton, A., Wang, X., Xu, M., Reece, M.Schrapel, K.: Effect of porosity and grain size on the microwave dielectric properties of sintered alumina. J. Am. Ceram. Soc. 80, 1885 1997Google Scholar
20Ferreira, V.M., Azough, F., Baptista, J.L.Freer, R.: Magnesium titanate microwave dielectric ceramics. Ferroelectrics 133, 127 1992CrossRefGoogle Scholar
21Pullar, R.C., Breeze, J.D.Alford, N.McN.: Characterization and microwave dielectric properties of M2+Nb2O6 ceramics. J. Am. Ceram. Soc. 88, 2466 2005CrossRefGoogle Scholar
22Rousseau, D.L., Bauman, R.P.Porto, S.P.S.: Normal mode determination in crystals. J. Raman Spectrosc. 10, 253 1981Google Scholar
23Seabra, M.P., Salak, A.N., Ferreira, V.M., Vieira, L.G.Ribeiro, J.L.: Dielectric properties of the (1–x)La(Mg1/2Ti1/2) O3xSrTiO3 ceramics. J. Eur. Ceram. Soc. 24, 2995 2004Google Scholar
24Wise, P.L., Reaney, I.M., Lee, W.E., Iddles, D.M., Cannell, D.S.Price, T.J.: Tunability of τf in perovskites and related compounds. J. Mater. Res. 17, 2033 2002CrossRefGoogle Scholar
25Viehland, D., Li, J.F., Jang, S.J., Cross, L.E.Wuttig, M.: Freezing of the polarization fluctuations in lead magnesium niobate relaxors. J. Appl. Phys. 66, 2916 1990Google Scholar
26Salak, A.N.Ferreira, V.M.: Microwave dielectric properties of Bi-substituted La(Mg1/2Ti1/2)O3. J. Eur. Ceram. Soc. 27, 2887 2007Google Scholar
27Skanavi, G.I.Matveeva, E.N.: New nonpiezoelectric dielectrics with very high dielectric permeability and small conductivity. Sov. Phys. JETP 3, 905 1957Google Scholar
28Ang, C.Yu, Z.: Dielectric relaxor and ferroelectric relaxor: Bi-doped paraelectric SrTiO3. J. Appl. Phys. 91, 1487 2002CrossRefGoogle Scholar
29Gomah-Pettry, J.R., Salak, A.N., Marchet, P., Ferreira, V.M.Mercurio, J.P.: Ferroelectric relaxor behaviour of Na0.5Bi0.5TiO3– SrTiO3 ceramics. Phys. Status Solidi B 241, 1949 2004CrossRefGoogle Scholar
30Samara, G.A.: Relaxor properties of compositionally disordered perovskites: Ba- and Bi-substituted Pb(Zr1−xTix)O3. Phys. Rev. B 71, 224108 2005CrossRefGoogle Scholar
31Nino, J.C., Lanagan, M.T.Randall, C.A.: Dielectric relaxation inBi2O3-ZnO-Nb2O5 cubic pyrochlore. J. Appl. Phys. 89, 4512 2001CrossRefGoogle Scholar
32Kamba, S., Porokhonskyy, V., Pashkin, A., Bovtun, V., Petzelt, J., Nino, J.C., Trolier-McKinstry, S., Lanagan, M.T.Randall, C.A.: Anomalous broad dielectric relaxation in Bi1.5Zn1.0Nb1.5O7 pyrochlore. Phys. Rev. B 66, 054106 2002CrossRefGoogle Scholar
33Nino, J.C., Lanagan, M.T., Randall, C.A.Kamba, S.: Correlation between infrared phonon modes and dielectric relaxation in inBi2O3-ZnO-Nb2O5 cubic pyrochlore. Appl. Phys. Lett. 81, 4404 2002CrossRefGoogle Scholar