Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-23T11:46:15.191Z Has data issue: false hasContentIssue false

Dielectric, piezoelectric, and pyroelectric studies of LiTaO3-derived ceramics sintered at 900°C following the addition of (LiF + MgF2)

Published online by Cambridge University Press:  31 January 2011

Zuo-Guang Ye
Affiliation:
Laboratoire de Chimie du Solide du C.N.R.S., 351 cours de la Libération, 33405 Talence Cedex, France
R. Von Der Mühll
Affiliation:
Laboratoire de Chimie du Solide du C.N.R.S., 351 cours de la Libération, 33405 Talence Cedex, France
J. Ravez
Affiliation:
Laboratoire de Chimie du Solide du C.N.R.S., 351 cours de la Libération, 33405 Talence Cedex, France
P. Hagenmuller
Affiliation:
Laboratoire de Chimie du Solide du C.N.R.S., 351 cours de la Libération, 33405 Talence Cedex, France
Get access

Abstract

High-densified LiTaO3-type ceramics have been obtained by sintering at 900°C after the addition of small amounts of a LiF + MgF2 mixture. Partial hydrolysis of MgF2 and volatilization of either LiF, LiOH, or Li2O due to hydrolysis and partial substitution of F-ions by (OH) occur during heat treatment. The ferroelectric Curie temperature Tc increases with the amount of additive. The ceramics have been polarized by heating to Tc and cooling down under a dc field. The piezoelectric and pyroelectric coefficients of such ceramics are approximately 30% and 20% of the corresponding values for a LiTaO3 single crystal.

Type
Articles
Copyright
Copyright © Materials Research Society 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Ye, Z. G., Miihll, R. Von Der, and Ravez, J., Mater. Res. Bull. 21, 1361 (1986).CrossRefGoogle Scholar
2Willard, H. H. and Winter, O. B., Ind. Eng. Chem. Anal. Ed. 5, 7 (1933).Google Scholar
3Ravez, J., Joo, G. T., Senegas, J., and Hagenmuller, P., Jpn. J. Appl. Phys. 24, 1000 (1985).Google Scholar
4Smith, R. T. and Welsh, F. S., J. Appl. Phys. 42, 2219 (1971).Google Scholar
5Byer, R. L. and Roundy, C. B., Ferroelectrics 3, 333 (1972).CrossRefGoogle Scholar