Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-26T05:34:46.322Z Has data issue: false hasContentIssue false

Dielectric and piezoelectric properties of the thermally annealed Pb(Zn,Mg)1/3Nb2/3O3–PbTiO3 system across the rhombohedral/tetragonal morphotropic phase boundary

Published online by Cambridge University Press:  03 March 2011

Hyun M. Jang*
Affiliation:
Department of Materials Science and Engineering, and Laboratory for Physical Chemistry of Dielectric Materials, Pohang University of Science and Technology (POSTECH), Pohang 790-784, Republic of Korea
Kyu-Mann Lee
Affiliation:
Department of Materials Science and Engineering, and Laboratory for Physical Chemistry of Dielectric Materials, Pohang University of Science and Technology (POSTECH), Pohang 790-784, Republic of Korea
*
a)Author to whom correspondence should be addressed.
Get access

Abstract

Effects of thermal annealing on the dielectric/piezoelectric properties of Pb(Zn,Mg)1/3Nb2/3O3-PbTiO3 ceramics (PZMN-PT with Zn/Mg = 6/4) were examined across the rhombohedral/tetragonal morphotropic phase boundary (MPB). Examination of the lattice parameters and the rhombohedral angle indicated that the MPB is in the vicinity of 24 mol% PbTiO3. Both the relative dielectric permittivity (∊r) and the piezoelectric constant (d33)/electromechanical coupling constant (kp) were increased by thermal annealing (800–900 °C) after sintering at 1150 °C for 1 h. The observed improvements in the dielectric and piezoelectric properties were attributed to the elimination of PbO-rich amorphous intergranular layers (about 1 nm thickness) induced by thermal annealing. Both the dielectric analysis using the series mixing model and the microscopic examination by transmission electron microscopy supported this conclusion.

Type
Articles
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Kuwata, J., Uchino, K., and Nomura, S., Ferroelectrics 37, 579 (1981).CrossRefGoogle Scholar
2Kuwata, J., Uchino, K., and Nomura, S., Jpn. J. Appl. Phys. 22 (9), 1298 (1982).CrossRefGoogle Scholar
3Jang, H. M., Oh, S. H., and Moon, J. H., J. Am. Ceram. Soc. 75 (1), 82 (1992).CrossRefGoogle Scholar
4Gururaja, T. R., Safari, A., and Halliyal, A., Am. Ceram. Soc. Bull. 65 (12), 1601 (1986).Google Scholar
5Swartz, S. L. and Shrout, T. R., Mater. Res. Bull. XVII, 1245 (1982).CrossRefGoogle Scholar
6Hayes, J. M., Gururaja, T. R., Geoffroy, G. L., and Cross, L. E., Mater. Lett. 5 (10), 396 (1987).CrossRefGoogle Scholar
7Shrout, T. R. and Halliyal, A., Am. Ceram. Soc. Bull. 66 (4), 704 (1987).Google Scholar
8Nomura, S. and Uchino, K., Ferroelectrics 50, 197 (1983).CrossRefGoogle Scholar
9Uchino, K., Am. Ceram. Soc. Bull. 65 (4), 647 (1986).Google Scholar
10Wheeler, C. E. and Pazol, B. G., Am. Ceram. Soc. Bull. 70 (1), 117 (1991).Google Scholar
11Jang, H. M., Lee, K-M., and Lee, M-H., J. Mater. Res. 9, 2634 (1994).CrossRefGoogle Scholar
12Hanh, L., Uchino, K., and Nomura, S., Jpn. J. Appl. Phys. 17, 637 (1978).CrossRefGoogle Scholar
13Landin, S. M. and Schulze, W. A., J. Am. Ceram. Soc. 73 (4), 913 (1990).CrossRefGoogle Scholar
14Yokomizo, Y., Takahashi, T., and Nomura, S., J. Phys. Soc. Jpn. 28 (5), 1278 (1970).CrossRefGoogle Scholar
15Kuwata, J., Uchino, K., and Nomura, S., Ferroelectrics 22, 863 (1979).CrossRefGoogle Scholar
16Choi, S. W., Shrout, T. R., Jang, S. J., and Bhalla, A. S., Ferroelectrics 100, 29 (1989).CrossRefGoogle Scholar
17Hench, L. L. and West, J. K., Principles of Electronic Ceramics (John Wiley & Sons, New York, 1990), Chap. 6.Google Scholar
18Smolenskii, G. M., Proc. Int. Meet. Ferroelectr., 2nd, 1969 (1970), p. 26.Google Scholar
19Rolov, B. N., Sov. Phys. Solid State (Engl. Transl.) 6, 1676 (1965).Google Scholar
20Pilgrim, S. M., Sutherland, A. E., and Winzer, S. R., J. Am. Ceram. Soc. 73 (10), 3122 (1990).CrossRefGoogle Scholar
21Harmer, M. P., Chen, J., Peng, P., Chan, H. M., and Smyth, D. M., Ferroelectrics 97, 263 (1989).CrossRefGoogle Scholar
22Chen, J., Chan, H. M., and Harmer, M. P., J. Am. Ceram. Soc. 72 (4), 593 (1989).CrossRefGoogle Scholar
23Wang, H-C. and Schulze, W. A., J. Am. Ceram. Soc. 73 (4), 825 (1990).CrossRefGoogle Scholar
24Randall, C. A., Hilton, A. D., Barber, D. J., and Shrout, T. R., J. Mater. Res. 8, 880 (1993).CrossRefGoogle Scholar
25Papet, P., Dougherty, J. P., and Shrout, T. R., J. Mater. Res. 5, 2902 (1990).CrossRefGoogle Scholar
26Jang, H. M., Cho, S. R., and Lee, K-M., J. Am. Ceram. Soc. 78 (2), 297 (1995).CrossRefGoogle Scholar
27Moon, J. H., Jang, H. M., and You, B. D., J. Mater. Res. 8, 3184 (1993).CrossRefGoogle Scholar
28Wittmer, D. E. and Buchanan, R. C., J. Am. Ceram. Soc. 64 (8), 485 (1981).Google Scholar