Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-26T07:26:25.589Z Has data issue: false hasContentIssue false

Diamond deposition on Ni/Ni-diamond coated stainless steel substrate

Published online by Cambridge University Press:  31 January 2011

A. K. Sikder
Affiliation:
Department of Physics, Indian Institute of Technology, Bombay-400 076, India
T. Sharda
Affiliation:
Department of Physics, Indian Institute of Technology, Bombay-400 076, India
D. S. Misra
Affiliation:
Department of Physics, Indian Institute of Technology, Bombay-400 076, India
D. Chandrasekaram
Affiliation:
Department of Earth Sciences, Indian Institute of Technology, Bombay-400 076, India
P. Veluchamy
Affiliation:
Department of Applied Chemistry, Gifu University, Gifu 501, Japan
H. Minoura
Affiliation:
Department of Applied Chemistry, Gifu University, Gifu 501, Japan
P. Selvam
Affiliation:
Department of Chemistry, Indian Institute of Technology, Bombay-400 076, India
Get access

Abstract

Electrodeposited Ni and Ni-diamond composite layers were used as diffusion barriers for Fe to facilitate the diamond growth on stainless steel substrates. Raman spectroscopy and scanning electron microscopy show the formation of good quality diamond crystallites by chemical vapor deposition. X-ray diffraction results indicate that the expansion of Ni unit cell has taken place due to the formation of the Ni–C solid solution. This observation is also well supported by x-ray photoelectron spectroscopy studies. The lattice constant of the expanded Ni unit cell matches closely with the diamond, and this may be helpful in explaining the epitaxial growth of diamond on single-crystal Ni observed by others.

Type
Articles
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Beckerle, J. D., Johnson, A. D., Yang, Q.Y., and Ceyer, S.T., J. Chem. Phys. 91, 5756 (1989).Google Scholar
2.Yudasaka, M., Tasaka, K., Kikuchi, R., Ohki, Y., Yoshimura, S., and Ota, E., J. Appl. Phys. 81, 7623 (1997).Google Scholar
3.Belton, D.N. and Schmieg, S.J., J. Appl. Phys. 66, 4223 (1989).Google Scholar
4.Yang, P.C., Zhu, W., and Glass, J.T., J. Mater. Res. 8, 1773 (1993).Google Scholar
5.Godbole, V.P., Jagannadham, K., and Narayan, J., Appl. Phys. Lett. 67, 1322 (1995).CrossRefGoogle Scholar
6.Johansson, E., Skytt, P., Carlsson, J.O., Wassdahl, N., and Nordgern, J., J. Appl. Phys. 79, 7248 (1996).Google Scholar
7.Fayer, A., Glozman, O., and Hoffman, A., Appl. Phys. Lett. 67, 2299 (1995).CrossRefGoogle Scholar
8.Weiser, Paul S., Prawer, S., Manory, R. R., Hoffman, A., Evans, P. J., and Paterson, P. J. K., Surf. Coat. Technol. 71, 167 (1995).CrossRefGoogle Scholar
9.Narayan, J., Godbole, V.P., Matera, G., and Singh, R.K., J. Appl. Phys. 71, 966 (1992).CrossRefGoogle Scholar
10.Shih, H.C., Sung, C. P., Fan, W.L., and Lee, C. K., Surf. Coat. Technol. 57, 197 (1993).CrossRefGoogle Scholar
11.Ong, T.P. and Chang, P.H., Appl. Phys. Lett. 58, 358 (1991).Google Scholar
12.Heidarpour, E. and Namba, Y., J. Mater. Res. 8, 2840 (1993).Google Scholar
13.Zhu, W., Yang, P.C., Glass, J. T., and Arezzo, F., J. Mater. Res. 10, 1455 (1995).Google Scholar
14.Sharda, T., Misra, D. S., and Avasthi, D.K., Vacuum 47, 1259 (1996).CrossRefGoogle Scholar
15.Kubelka, S., Haubner, R., Lux, B., Steiner, R., Stingeder, G., and Grasserbauer, M., Diamond Relat. Mater. 3, 1360 (1994).CrossRefGoogle Scholar
16.Belton, D. N. and Schmieg, S. J., Surf. Sci. 233, 131 (1990).Google Scholar
17.Sikder, A.K., Sharda, T., Misra, D. S., Chandrasekaram, D., and Selvam, P., Diamond Relat. Mater. 7, 1010 (1998).Google Scholar