Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-23T07:46:19.607Z Has data issue: false hasContentIssue false

Development of suspensions of rod-shaped β–FeOOH particles in infrared transmitting solvents for use as artificial Kerr media

Published online by Cambridge University Press:  31 January 2011

D.L. Naylor
Affiliation:
Department of Electrical Engineering and Computer Science, University of Illinois at Chicago, Chicago, Illinois 60680
Get access

Abstract

The first suspensions of rod-shaped dielectric particles in an infrared transmitting solvent are reported. Specifically, micron size β–FeOOH rods have been produced in chloroform, carbon tetrachloride, and carbon disulfide. A technique to transfer the particles from water into organic solvents is demonstrated and a novel optical method to determine the degree of stability of the organosols is used. Sedimentation times vary with preparation technique over the range of minutes to hours, often being long enough to allow the use of the material as an infrared Kerr medium with large electric field induced birefringence. Dispersions in hexane, which has good microwave transmission, have also been produced.

Type
Articles
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Kielich, S., Chem. Phys. Lett. 1, 675 (1968).CrossRefGoogle Scholar
2.Marks, A. M., Appl. Opt. 8, 1397 (1969).Google Scholar
3.Blaszczak, Z., Pr. Kom. Mat.-Przyr., Poznan. Tow. Przyj. Nauk., Fiz. Dielektr. Radiospektrosk. 8 147 (1976).Google Scholar
4.Leung, K. M., Opt. Lett. 10, 347 (1985).CrossRefGoogle Scholar
5.Rogovin, D. and Sari, S. O., Phys. Rev. A 31, 2375 (1985).CrossRefGoogle Scholar
6.Nayior, D. L., “Studies of materials and configurations for optical beam phase conjugation,” Dissertation, U. Southern California, 1988.Google Scholar
7.Bobbs, B., Shih, R., Fetterman, H., and Ho, W. H., Appl. Phys. Lett. 52, 4 (1988).CrossRefGoogle Scholar
8.Naylor, D. L., Topical Meeting on Optical Properties of Materials, 1988 Technical Digest Series (Optical Society of America, Washington, DC, 1988), Vol. 9, p. 117.Google Scholar
9.Stratis, G. and Naylor, D. L., Electromagnetics 11, 309 (1991).Google Scholar
10.Hellwarth, R. W., Phys. Rev. A 31, 533 (1985).CrossRefGoogle Scholar
11.Kandori, K., Kitahara, A., and Kon-no, K., Bull. Chem. Soc. Jpn. 56, 1581 (1983).CrossRefGoogle Scholar
12.Kandori, K., Kon-no, K., and Kitahara, A., Bull. Chem. Soc. Jpn. 57, 3419 (1984).CrossRefGoogle Scholar
13.van Helden, A. K., Jansen, J. W., and Vrij, A., J. Colloid Interface Sci. 81, 354 (1981).CrossRefGoogle Scholar
14.Matijević, E. and Scheiner, P., J. Colloid Interface Sci. 63, 509 (1978).CrossRefGoogle Scholar
15.Her, R. K., U.S. Patent 2801185.Google Scholar
16.Matijević, E., Prog. Colloid Polym. Sci. 61, 24 (1976).CrossRefGoogle Scholar
17.Ballard, C. C., Broge, E. C., Her, R. K., John, D. S. St., and McWhorter, J. R., J. Phys. Chem. 65, 20 (1961).CrossRefGoogle Scholar
18.Bradley, D. C., Gaur, D. P., and Mehrotra, R. C., Metal Alkoxides (Academic Press, London, 1978).Google Scholar
19.Mehrotra, R. C., J. Indian Chem. Soc. 59, 715 (1982).Google Scholar
20.Komiya, S., Tane-ichi, S., Yamamoto, A., and Yamamoto, T., Bull. Chem. Soc. Jpn. 53, 673 (1980).CrossRefGoogle Scholar
21.Lyklema, J., Adv. Colloid Interface Sci. 2, 65 (1968).CrossRefGoogle Scholar