Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-17T15:14:56.920Z Has data issue: false hasContentIssue false

Development of semi-interpenetrating polymer networks and quantum dots–polymer nanocomposites for low-cost, flexible OLED display application

Published online by Cambridge University Press:  25 January 2012

Lihua Zhao*
Affiliation:
Hewlett-Packard Labs, Hewlett-Packard Company, Palo Alto, California 94304
Zhang-Lin Zhou*
Affiliation:
Hewlett-Packard Labs, Hewlett-Packard Company, Palo Alto, California 94304
Zengshan Guo
Affiliation:
The Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
Gary Gibson
Affiliation:
Hewlett-Packard Labs, Hewlett-Packard Company, Palo Alto, California 94304
James A. Brug
Affiliation:
Hewlett-Packard Labs, Hewlett-Packard Company, Palo Alto, California 94304
Sity Lam
Affiliation:
Hewlett-Packard Labs, Hewlett-Packard Company, Palo Alto, California 94304
Jian Pei
Affiliation:
The Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
Samuel S. Mao
Affiliation:
Lawrence Berkeley National Laboratory, Department of Mechanical Engineering, University of California, Berkeley, Berkeley, California 94720
*
a)Address all correspondence to these authors. e-mail: [email protected]
Get access

Abstract

Recently, tremendous progress has been made toward the application of organic light-emitting diodes (OLEDs) in full color flat panel displays and other devices. This article reviews and discusses our recent progress in extended development of emissive semi-interpenetrating polymer networks (E-semi-IPNs) and hybrid quantum dots (QDs)–polymer nanocomposites for use in multicolor and multilayer OLED pixels through low-cost solution processing. Our semi-IPNs with high solvent resistance, containing an inert polymer network and conjugated polymers, served in different layers of OLED devices. These semi-IPNs do not require complicated chemical modification to OLED materials; therefore, many state-of-the-arts conjugated polymers can be utilized to achieve red–green–blue and white OLEDs by tuning formulations. Our research findings on hybrid QD–oligomer nanocomposites lead to the successful design and synthesis of QD–polymer hybrid nanocomposites, which were used to build proof-of-the-concept devices showing good promise in providing excellent color purity and stability from QDs and solution processability from hybrid nanocomposites.

Type
Invited Feature Paper
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Mei, P., Perlov, C.M., Jeans, A.H., and Taussig, C.P.: Thin film devices and methods for forming the same. US Patent No. 7541227 (2009).Google Scholar
2.Müllen, K. and Scherf, U.: Dendrimer light-emitting diodes, in Organic Light Emitting Devices: Synthesis, Properties and Applications, Vol. 8 (Wiley-VCH, Weinheim, Germany, 2006), p. 151.Google Scholar
3.Herbner, T.R., Wu, C.C., Marcy, D., Lu, M.H., and Strum, J.C.: Ink-jet printing of doped polymers for organic light-emitting devices. Appl. Phys. Lett. 72, 519 (1998).CrossRefGoogle Scholar
4.Gustafsson, G., Gao, Y., Treacy, G.M., Klavetter, F., Colaneri, N., and Heeger, A.J.: Flexible light-emitting diodes made from soluble conducting polymers. Nature 357, 477 (1992).CrossRefGoogle Scholar
5.Forrest, S.R.: The path to ubiquitous and low-cost organic electronic appliances on plastic. Nature 428, 911 (2004).CrossRefGoogle ScholarPubMed
6.Kiebooms, R., Menon, R., and Lee, K.: Conducting polymers, in Handbook of Advanced Electronic and Photonic Materials and Devices, edited by Nalwa, H. S., Vol. 8 (Academic, San Diego, CA 2001), p. 1.Google Scholar
7.Zhou, Z.L., Sheng, X., Nauka, K., Zhao, L., Gibson, G., Lam, S., Yang, C., Brug, J., and Elder, R.: Multilayer structured polymer light emitting diodes with cross-linked polymer matrices. Appl. Phys. Lett. 96, 013504 (2010).CrossRefGoogle Scholar
8.Zhou, Z.L., Sheng, X., Zhao, L., Gibson, G., Lam, S., Nauka, K., and Brug, J.: Towards greatly improved efficiency of polymer light emitting diodes, in Concepts in Molecular and Organic Electronics, edited by N. Koch, E. Zojer, S-W. Hla, and X. Zhu (Mater. Res. Soc. Proc. 1154, Warrendale, PA, 2009) 1154-B10-108.Google Scholar
9.Colvin, V.L., Schlamp, M.C., and Alivisatos, A.P.: Light-emitting diodes made from cadmium selenide nanocrystals and a semiconducting polymer. Nature 370, 354 (1994).CrossRefGoogle Scholar
10.Dabbousi, B.O., Bawendi, M.G., Onitsuka, O., and Rubner, M.F.: Electroluminescence from CdSe quantum-dot/polymer composites. Appl. Phys. Lett. 66, 1316 (1995).CrossRefGoogle Scholar
11.Chang, T-W.F., Musikhin, S., Bakueva, L., Levina, L., Hines, M.A., Cyr, P.W., and Sargent, E.H.: Efficient excitation transfer from polymer to nanocrystals. Appl. Phys. Lett. 84, 4295 (2004).CrossRefGoogle Scholar
12.Huynh, W.U., Dittmer, J.J., and Alivisatos, A.P.: Hybrid nanorod-polymer solar cells. Science 295, 2425 (2002).CrossRefGoogle ScholarPubMed
13.McDonald, S.A., Konstantatos, G., Zhang, S.G., Cyr, P.W., Klem, E.J.D., Levina, L., and Sargent, E.H.: Solution-processed PbS quantum dot infrared photodetectors and photovoltaics. Nat. Mater. 4, 138 (2005).CrossRefGoogle ScholarPubMed
14.Liu, J., Tanaka, T., Sivula, K., Alivisatos, A.P., and Frechet, J.M.: Employing end-functional polythiophene to control the morphology of nanocrystal-polymer composites in hybrid solar cells. J. Am. Chem. Soc. 126, 6550 (2004).CrossRefGoogle ScholarPubMed
15.Jacob, J., Sax, S., Piok, T., List, E.J.W., Grimsdale, A.C., and Müllen, K.: Ladder-type pentaphenylenes and their polymers: Efficient blue-light emitters and electron-accepting materials via a common intermediate. J. Am. Chem. Soc. 126(22), 6987 (2004).CrossRefGoogle Scholar
16.Skaff, H., Sill, K., and Emrick, T.: Quantum dots tailored with poly(para-phenylene vinylene). J. Am. Chem. Soc. 126(36), 11322 (2004).CrossRefGoogle ScholarPubMed
17.Guo, Z., Zhao, L., Pei, J., Zhou, Z.L., Gibson, G., Lam, S., Brug, J., and Mao, S.S.: CdSe/ZnS nanoparticle composites with amine-functionalized polyfluorene derivatives for polymeric light-emitting diodes: Synthesis, photophysical properties, and the electroluminescent performance. Macromolecules 43(4), 1860 (2010).CrossRefGoogle Scholar
18.Peet, J., Brocker, E., Xu, Y., and Bazan, G.C.: Controlled β-phase formation in poly(9,9-di-n-octylfluorene) by processing with alkyl additives. Adv. Mater. 20, 1882 (2008).CrossRefGoogle Scholar
19.Ariu, M., Sima, M., Rahn, M.D., Hill, J., Fox, A.M., Lidzey, D.G., Oda, M., Cabanillas-Gonzalez, J., and Bradley, D.D.C.: Exciton migration in β-phase poly(9,9-dioctylfluorene). Phys. Rev. B 67, 195333 (2003).CrossRefGoogle Scholar
20.Lu, H.H., Liu, C.Y., Chang, C.H., and Chen, S.A.: Self-dopant formation in poly(9,9-di-n-octylfluorene) via a dipping method for efficient and stable pure-blue electroluminescence. Adv. Mater. 19, 2574 (2007).CrossRefGoogle Scholar
21.Guo, Z., Pei, J., Zhou, Z.L., Zhao, L., Gibson, G., Lam, S., and Brug, J.: Amine groups-functionalized alcohol-soluble polyfluorene derivatives: Synthesis, photophysical properties, and self-assembly behaviors. Polymer 50(20), 4794 (2009).CrossRefGoogle Scholar
22.Guo, Z., Liu, D., Wang, C., Pei, J., Zhou, Z.L., Zhao, L., Gibson, G., Brug, J., Lam, S., Mao, S.: Phosphine oxide-functionalized polyfluorene derivatives: Synthesis, photophysics, electrochemical properties, and electroluminescence performance. Sci. China Chem. 54(4), 678 (2011).CrossRefGoogle Scholar