Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-23T12:18:34.211Z Has data issue: false hasContentIssue false

Development of a reliable materials base for superconducting electronics

Published online by Cambridge University Press:  31 January 2011

JiPing Zhou
Affiliation:
Department of Chemistry and Biochemistry, University of Texas at Austin, Austin, Texas 78712
Rung-Kuang Lo
Affiliation:
Department of Chemistry and Biochemistry, University of Texas at Austin, Austin, Texas 78712
John T. McDevitt*
Affiliation:
Department of Chemistry and Biochemistry, University of Texas at Austin, Austin, Texas 78712
John Talvacchio
Affiliation:
Northrop Grumman Science and Technology Center, Pittsburgh, Pennsylvania 15235
Martin G. Forrester
Affiliation:
Northrop Grumman Science and Technology Center, Pittsburgh, Pennsylvania 15235
Brian D. Hunt
Affiliation:
Northrop Grumman Science and Technology Center, Pittsburgh, Pennsylvania 15235
Q. X. Jia
Affiliation:
Superconductivity Technology Center, Los Alamos National Laboratory, Los Alamos, New Mexico 87545
D. Reagor
Affiliation:
Superconductivity Technology Center, Los Alamos National Laboratory, Los Alamos, New Mexico 87545
*
b)Author to whom correspondence should be addressed.
Get access

Abstract

Careful studies of the corrosion, redox, galvanic, and oxygen evolution/uptake reactions associated with YBa2Cu3O7–δ and related compounds have been completed. These studies have led to an understanding of the many factors that contribute to the poor material characteristics exhibited by these popular high-Tc phases. With knowledge of the structure-reactivity relationships, a powerful crystal engineering approach has been developed that is capable of producing cation substituted versions of YBa2Cu3O7–δ; the resulting compounds therefrom produced exhibit markedly improved processability, oxygen stability, and durability characteristics. These materials have been combined in thin film structures so as to make prototype SNS junctions and SQUID sensors which exhibit promising device performance characteristics.

Type
Articles
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Wu, M. K., Ashburn, J.R., Torng, C. J., Hor, P. H., Meng, R. L., Gao, L., Huang, Z. J., Wang, Y. Q., and Chu, C. W., Phys. Rev. Lett. 58, 908 (1987).CrossRefGoogle Scholar
2.Wu, X. D., Foltyn, S.R., Arendt, P., Townsend, J., Adams, C., Campbell, I. H., Tiwari, P., Coulter, Y., and Peterson, D. E., Appl. Phys. Lett. 65, 1961 (1994).CrossRefGoogle Scholar
3.Gross, R., Chaudhari, P., Kawasaki, M., Ketchen, M. B., and Gupta, A., Appl. Phys. Lett. 57, 727 (1990).CrossRefGoogle Scholar
4.Wellstood, F. C., Kingston, J. J., and Clarke, J., Appl. Phys. Lett. 56, 336 (1990).CrossRefGoogle Scholar
5.Yan, M. F., Barns, R. L., O'Bryan, H. M. Jr, Gallagher, P. K., Sherwood, R. C., and Jin, S., Appl. Phys. Lett. 51, 532 (1987).CrossRefGoogle Scholar
6.Zhou, J. P., Riley, D., Manthiram, A., Arendt, M., Schmerling, M., and McDevitt, J. T., Appl. Phys. Lett. 63, 548 (1993).CrossRefGoogle Scholar
7.Char, K., Antognazza, L., and Geballe, T. H., Appl. Phys. Lett. 65, 904 (1994).CrossRefGoogle Scholar
8.Hunt, B. D., Forrester, M. G., Talvacchio, J., McCambridge, J. D., and Young, R. M., Appl. Phys. Lett. 68, 3805 (1996).CrossRefGoogle Scholar
9.Char, K., Antognazza, L., and Geballe, T. H., Appl. Phys. Lett. 63, 2420 (1994).CrossRefGoogle Scholar
10.Jia, Q. X., Reagor, D., Foltyn, S. R., Hawley, M., Mombourquette, C., Springer, K. N., and Wu, X. D., Physica C 228, 160 (1994).CrossRefGoogle Scholar
11.Jia, Q. X., Wu, X. D., Reagor, D.W., Foltyn, S. R., Houlton, R. J., Tiwari, P., Mombourquette, C., Campbell, I. H., Garzon, F., and Peterson, D. E., Appl. Phys. Lett. 78, 2871 (1995).Google Scholar
12.Faley, M. I., Poppe, U., Soltner, H., Jia, C. L., Siegel, M., and Urban, K., Appl. Phys. Lett. 63, 2139 (1993).CrossRefGoogle Scholar
13.Zhou, J. P., Riley, D. R., and McDevitt, J. T., Chem. Mater. 5, 361 (1993).CrossRefGoogle Scholar
14.Zhou, J. P. and McDevitt, J. T., Solid State Commun. 86, 11 (1993).CrossRefGoogle Scholar
15.Manthiram, A. and Goodenough, J. B., Physica C 159, 760 (1989).CrossRefGoogle Scholar
16.Slater, C. R. and Greaves, C., Supercond. Sci. Technol. 5, 205 (1992).CrossRefGoogle Scholar
17.Rajagopal, H., Sequeira, A., Ganguly, R., and Yakhmi, J. V., J. Superconductivity 9, 615 (1997).CrossRefGoogle Scholar
18.Gavaler, J. R., Talvacchio, J., Braggins, T. T., and Forrester, M. G., J. Appl. Phys. 70, 4383 (1991).CrossRefGoogle Scholar
19.Zhou, J. P., Lo, R-K., Savoy, S. M., Arendt, M., Armstrong, J., Yang, D-Y., Talvacchio, J., and McDevitt, J. T., Physica C 273, 223 (1997).CrossRefGoogle Scholar
20.Brown, I. D., J. Solid State Chem. 90, 1952 (1991).CrossRefGoogle Scholar
21.Brown, I. D., Phys. Chem. Mineral. 15, 30 (1987).CrossRefGoogle Scholar
22.Brown, I. D. and Altermatt, D., Acta Crystallogr. Sect. B 41, 244 (1985).CrossRefGoogle Scholar
23.Thompson, J. G., Hyde, B. G., Withers, R. L., Anderson, J. S., Fitzgerald, J. D., Bitmead, J., Paterson, M. S., and Stewart, A. M., Mater. Res. Bull. 22, 1715 (1987); H. W. Zandbergen, R. Gronsky, and G. Thomas, Phys. Status Solidi 105, 207 (1988).CrossRefGoogle Scholar
24.David, W. I. F., Harrison, W. T. A., Gunn, J. M. F., Moze, O., Soper, A. K., Day, P., Jorgensen, J. D., Hinks, D. G., Beno, M. A., Soderholm, L., Capone, D. W. II, Schuller, I. K., Segre, C. U., Zhang, K., and Grace, J. D., Nature 327, 310 (1987).CrossRefGoogle Scholar
25.Uchida, S., in Low Temperature Physics: Progress in High Temperature Superconductivity, edited by Heiras, J., Barrio, R. A., Akathi, T., and , J. (Proc. IX Winter Meeting 5, World Scientific, Singapore, 1988), p. 63.Google Scholar
26.Veal, B. W., Kwok, W. K., Umezawa, A., Crabtree, G. W., Jorgensen, J. D., Downey, J. W., Nowicki, L. J., Mitchell, A. W., Paulikaus, A. P., and Sowers, C. H., Appl. Phys. Lett. 51, 279 (1987).CrossRefGoogle Scholar
27.Segre, C. U., Dabrowski, B., Hinks, D. G., Zhang, K., Jorgensen, J. D., Beno, M. A., and Schuller, I. K., Nature 329, 227 (1987).CrossRefGoogle Scholar
28.Manthiram, A., Tang, X. X., and Goodenough, J. B., Phys. Rev. B 37, 3734 (1988).CrossRefGoogle Scholar
29.Tarascon, J. M., Barboux, P., Miceli, P. F., Greene, L. H., Hull, G. W., Eibschutz, M., and Sunshine, S. A., Phys. Rev. B 37, 7458 (1988).CrossRefGoogle Scholar
30.Shannon, R. D., Acta Cryst. A32, 751 (1976).CrossRefGoogle Scholar
31.Tokura, Y., Torrance, J. B., Huang, T. C., and Nazzal, A. I., Phys. Rev. B 28, 7156 (1988).CrossRefGoogle Scholar
32.Zhou, J. P., Riley, D. R., Zhu, Y. T., Manthiram, A., and McDevitt, J. T., J. Am. Chem. Soc. 116, 9389 (1994).CrossRefGoogle Scholar
33.Zhou, J. P., Savoy, S. M., Lo, R-K., Zhao, J., Arendt, M., Zhu, Y. T., and McDevitt, J. T., Appl. Phys. Lett. 66, 2900 (1995).CrossRefGoogle Scholar
34.Manthiram, A., Swinnea, J. S., Sui, Z. T., Steinfink, H., and Goodenough, J. B., J. Am. Chem. Soc. 109, 667 (1987).CrossRefGoogle Scholar
35.Tallon, L. T. and Mellander, B-E., Science 258, 781 (1992).CrossRefGoogle Scholar
36.Strobel, P., Capponi, J. J., Chaillout, C., Marezio, M., and Tholence, J. L., Nature 327, 306 (1987).CrossRefGoogle Scholar
37.Tarascon, J. M., Barboux, P., Miceli, P. F., Greene, L. H., Hull, G. W., Eibschutz, M., and Sunshine, A., Phys. Rev. B 37, 7458 (1988).CrossRefGoogle Scholar
38.Cava, R. J., Batlogg, B., Rabe, K. M., Rietman, E. A., Gallagher, P. K., and Rupp, L. W. Jr, Physica C 156, 523 (1988).CrossRefGoogle Scholar
39.Zhou, J-S., Zhou, J. P., Goodenough, J. B., and McDevitt, J. T., Phys. Rev. B 51, 3250 (1995).CrossRefGoogle Scholar
40.Zhou, J. P. and McDevitt, J. T., IEEE Trans. Appl. Supercond. (in press, 1997).Google Scholar
41.Moeckly, B. and Char, K., Physica C 265, 283 (1996).CrossRefGoogle Scholar
42.Stewart, W. C., Appl. Phys. Lett. 12, 277 (1968); D. E. McCumber, J. Appl. Phys. 39, 3113 (1968).CrossRefGoogle Scholar
43.Oh, B., Choi, Y. H., Moon, S. H., Kim, H. T., and Min, B. C., Appl. Phys. Lett. 69, 2288 (1996).CrossRefGoogle Scholar
44.Kebede, K., Jee, C. S., Schwegler, J., Crow, J. E., Mihalisin, T., Myer, G. H., Salomon, R. E., Schlottmann, P., Kuric, M. V., Bloom, S. H., and Guertin, R. P., Phys. Rev. B 40, 4453 (1989).CrossRefGoogle Scholar
45.Cantoni, M. and Nissen, H. U., Physica C 211, 404 (1993).CrossRefGoogle Scholar