Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-23T12:03:39.924Z Has data issue: false hasContentIssue false

Determining fracture facet crystallography using electron backscatter patterns and quantitative tilt fractography

Published online by Cambridge University Press:  03 March 2011

D.C. Slavik
Affiliation:
Department of Materials Science and Engineering, University of Virginia, Charlottesville, Virginia 22903-2442
J.A. Wert
Affiliation:
Department of Materials Science and Engineering, University of Virginia, Charlottesville, Virginia 22903-2442
R.P. Gangloff
Affiliation:
Department of Materials Science and Engineering, University of Virginia, Charlottesville, Virginia 22903-2442
Get access

Abstract

A methodology is presented to characterize the crystallography of individual fracture surface facets. Electron backscatter patterns (EBSP's) from a metallographic section through a facet identify grain orientation, and quantitative tilt fractography identifies facet orientation; these results are combined to establish fracture facet crystallography. For this technique, facet electropolishing is not required, the facet alignment procedure is accurate and quick, and the method can be generalized to different microstructures, test environments, or facet orientations. Method accuracy is illustrated for 25 to 50 μm fatigue crack facets in an unrecrystallized Al–Li–Cu alloy (AA2090) that has 5 μm thick subgrains in elongated grains that are 10 to 200 μm thick. The fine subgrain structure and tortuous fatigue crack profile precludes the use of other diffraction techniques for determining AA2090 facet crystallography. EBSP and tilt fractography results demonstrate that vacuum fatigue cracks in AA2090 are nearly parallel to local {111} planes.

Type
Articles
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Barrett, C. S. and Massalski, T. B., Structure of Metals (McGraw-Hill, New York, 1966), p. 416.Google Scholar
2Meyn, D. A., Trans. ASM 61, 52 (1968).Google Scholar
3Pelloux, R. M. N., Trans. ASM 62, 281 (1969).Google Scholar
4Garrett, G. G. and Knott, J. F., Acta Metall. 23, 841 (1975).Google Scholar
5Davidson, D. L. and Eylon, D., Metall. Trans. A 11A, 837 (1980).Google Scholar
6Wert, J. A. and Robertson, W. M., Metallography 15, 367 (1982).Google Scholar
7Meletis, E. I., in Fracture, Measurement of Localized Deformation by Novel Techniques, edited by Gerberich, W. W. and Davidson, D. L. (TMS-AIME, Warrendale, PA, 1984), p. 87.Google Scholar
8Fager, D. N., Hyatt, M. V., and Diep, H. T., Scripta Metall. 20, 1159 (1986).Google Scholar
9Lynch, S. P., Acta Metall. 36, 2639 (1988).Google Scholar
10Yoder, G. R., Pao, P. S., Imam, M. A., and Cooley, L. A., Scripta Metall. 22, 1241 (1988).Google Scholar
11Birnbaum, H. K., in Hydrogen Effects on Material Behavior, edited by Moody, N. R. and Thompson, A. W. (The Minerals, Metals & Materials Society, 1990), p. 639.Google Scholar
12Reynolds, A. P. and Stoner, G. E., Metall. Trans. A 22A, 1849 (1991).Google Scholar
13Chen, C. Q. and Li, H. X., in Aluminum-Lithium 5, edited by Sanders, T. H. and Starke, E. A. Jr. (Materials and Component Engineering Publications Ltd., Wardley Heath, U.K., 1989), p. 972.Google Scholar
14Tintillier, R., Gudladt, H. J., Gerold, V., and Petit, J., in Aluminum-Lithium 5, edited by Sanders, T. H. and Starke, E. A. Jr. (Materials and Component Engineering Publications Ltd., Wardley Heath, U.K., 1989), p. 1135.Google Scholar
15Xu, Y. B., Wang, L., Zhang, Y., Wang, Z. G., and Hu, Q. Z., Metall. Trans. A 22A, 723 (1991).Google Scholar
16Davidson, D. L., Int. Metals Rev. 29, 75 (1984).Google Scholar
17Kozubowski, J. A., Lii, M-J., and Gerberich, W.W., Scanning 9, 237 (1987).Google Scholar
18Venkateswara Rao, K. T. and Ritchie, R. O., Int. Mater. Rev. 37, 153 (1992).Google Scholar
19Piascik, R. S. and Gangloff, R. P., Metall. Trans. A (1993, in press).Google Scholar
20Slavik, D. C. and Gangloff, R. P., Fatigue '93, edited by Bailon, J. P. and Dickson, J. I. (EMAS, West Midlands, U.K., 1993), Vol. II, pp. 757-765.Google Scholar
21Dingley, D. J., Scanning Electron Microscopy II, 569 (1984).Google Scholar
22Dingley, D. J. and Baba-Kishi, K., Scanning Electron Microscopy II, 383 (1986).Google Scholar
23Wright, S. I. and Adams, B. L., Metall. Trans. A 23A, 759 (1992).Google Scholar
24Randle, V., Ralph, B., and Dingley, D., Acta Metall. 36, 267 (1988).Google Scholar
25Barlat, F., Brem, J. C., and Liu, J., Scripta Metall. 27, 1121 (1992).CrossRefGoogle Scholar
26ASTM Standard E647-88A, in the 1989 Annual Book ofASTM Standards (ASTM, Philadelphia, PA, 1989), Vol. 03.01, p. 646.Google Scholar
27Slavik, D. C., Blankenship, C. P. Jr., Starke, E. A. Jr., and Gangloff, R.P., unpublished results.Google Scholar
28Piascik, R. S. and Gangloff, R. P., Metall. Trans. A 22A, 2415 (1991).Google Scholar
29Jata, K. V. and Starke, E. A. Jr., Metall. Trans. A 17A, 1011 (1986).Google Scholar
30Knott, J. F., Fundamentals of Fracture Mechanics (John Wiley and Sons, New York, 1979), p. 89.Google Scholar
31Wilkinson, A. J. and Dingley, D. J., Acta Metall. 39, 3047 (1991).Google Scholar