Hostname: page-component-7bb8b95d7b-5mhkq Total loading time: 0 Render date: 2024-09-16T11:35:09.288Z Has data issue: false hasContentIssue false

Determination of the stress-dependent stiffness of plasma-sprayed thermal barrier coatings using depth-sensitive indentation

Published online by Cambridge University Press:  31 January 2011

J. Malzbender
Affiliation:
Institute for Materials and Processes in Energy Systems, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
R. W. Steinbrech
Affiliation:
Institute for Materials and Processes in Energy Systems, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
Get access

Abstract

The elastic response of atmospheric plasma-sprayed coatings was investigated using Vickers and spherical indenter geometries. In both cases a strong dependency of the stiffness on the applied load (indentation depth) was observed. The stiffness of the coatings decreased with increasing load for a Vickers indenter, whereas it increased for a spherical indenter. This contrary behavior was related to the relative crack density in the deformed volume and to the stress dependence of the stiffness due to crack closure. The effect of annealing on the stiffness was quantified for both tip geometries. The heat treatment yielded additional information on the relationship between the indentation data and the microstructural defects. From the results it was concluded that the stiffness measured using a sharp indenter and small load reflected the elastic behavior of single spraying splats. With the relatively large spherical indenter, the average global stiffness of the thermal barrier coating was measured even at small loads. From the data obtained using the spherical indenter, a compressive stress–strain curve was suggested. Furthermore, values of the apparent crack density and yield strength were determined from the indentation tests.

Type
Articles
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Grünling, H.W. and Mannsmann, W., J. Phys. (Paris) 4, 903 (1993).Google Scholar
DeMasi-Marcin, J.T. and Gupta, D.K., Surf. Coat. Technol. 68/69, 1 (1994).CrossRefGoogle Scholar
Marshall, D.B. and Evans, A.G., J. Appl. Phys. 56, 2632 (1984).Google Scholar
Evans, A.G. and Hutchinson, J.W., Int. J. Solids Struct. 20, 455 (1984).Google Scholar
Sinha, A.K., Levinstein, H.J., and Smith, T.E., J. Appl. Phys. 49, 2423 (1978).CrossRefGoogle Scholar
Kuroda, S. and Clyne, T.W., Thin Solid Films 200, 49 (1991).Google Scholar
Thompson, J.A. and Clyne, T.W., Acta Mater. 49, 1565 (2001).Google Scholar
Busso, E.P., Lin, J., S. Sakurai, and N. Nakayama, Acta Mater. 49, 1515 (2001).Google Scholar
Basu, D., Funke, C., and Steinbrech, R.W., J. Mater. Res. 14, 12 (1999).Google Scholar
Johnson, C.A., Ruud, J.A., Bruce, R., and Wortman, D., Surf. Coat. Technol. 108–109, 80 (1998).Google Scholar
Malzbender, J., Toonder, J.M.J. den, Balkenende, A.R., and With, G. de, Mater. Sci. Eng. R 36, 47 (2002).Google Scholar
Eldridge, J.I., Zhu, D., and Miller, R.A., J. Am. Cer. Soc. 84, 2737 (2001).CrossRefGoogle Scholar
Wessel, E. and Steinbrech, R.W., Key. Eng. Mater. 223, 55 (2002).Google Scholar
Siebert, B., Funke, C., Vaßen, R., Stöver, D., J. Mater. Process. Technol. 92–93, 217 (1999).Google Scholar
DIN 50359, Deutsches Institut für Normung e.V., Beuth Verlag, Berlin, Germany (1997).Google Scholar
Malzbender, J., J. Euro. Ceram. Soc. 23, 1355 (2003).Google Scholar
Oliver, W.C. and Pharr, G.M., J. Mater. Res. 7, 1564 (1992).Google Scholar
Zhang, T-Y. and Xu, W-H., J. Mater. Res. 17, 1715 (2002).Google Scholar
Grau, P.. Ullner, C., and Behncke, H-H., Materialprüfung 39, 9 (1997).Google Scholar
Bobji, M.S. and Biswas, S.K., Trib. Lett. 7, 51 (1999).Google Scholar
Meinhard, H. and Grau, P., Härterei-Technische Mitteilungen 56, 287 (2001).Google Scholar
Grau, P., Ullner, C., and Behncke, H., Materialprüfung 39, 362 (1997).Google Scholar
Lima, R.S., Kucuk, A., and Berndt, C.C., Surf. Coat. Technol. 135, 166 (2001).Google Scholar
Gusev, A.I., Physics-Uspehki 41, 49 (1998).Google Scholar
Kim, H.S. and Bush, M.B., NanoStructured Mater. 11, 361 (1999).CrossRefGoogle Scholar
Giannakopoulos, A.E., Thin Solid Films 332, 172 (1998).Google Scholar
Nakamura, T., Quina, G., and Berndt, C.C., J. Am. Cer. Soc. 83, 578 (2000).Google Scholar
Anthoine, A., Int. J. Solids Structures 37, 1003 (2000).Google Scholar
Kachanov, M., Tsukrov, I., and Shafiro, B., Appl. Mech. Rev. 47, 151 (1994).Google Scholar
Nakamura, T., Qian, G., and Berndt, C.C., J. Am. Ceram. Soc. 83, 578 (2000).Google Scholar
Swadener, J.G., Taljat, B., and Pharr, G.M., J. Mater. Res. 16, 2091 (2001).Google Scholar
Kim, H.J. and Kweon, Y.G., Thin Solid Films 342, 201 (1999).CrossRefGoogle Scholar
Malzbender, J. and Steinbrech, R.W., J. Mater. Res. 18, 1374 (2003).CrossRefGoogle Scholar
Wallace, J.S. and Ilavsky, J., J. Thermal Spray Technol. 7, 521 (1998).CrossRefGoogle Scholar
Allen, A.J., Ilavsky, J., Long, G.G., Wallace, J.S., Berndt, C.C., and Herman, H., Acta Mater. 49, 1661 (2001).Google Scholar
Steinbech, R.W., Ceramic Eng. Sci. Proc. 23, 371 (2002).Google Scholar
Thurn, G., Schneider, G.A., Bahr, H-A., Aldinger, F., Surf. Coat. Technol. 123, 147 (2000).Google Scholar
Ahn, J-H., Jeon, E-C., Choi, Y., Lee, Y-H., and Kwon, D., Current Appl. Phys. 2, 525 (2002).CrossRefGoogle Scholar
Kroupa, F. and Dubsky, J., Scripta Mater. 40, 1249 (1999).Google Scholar
Sevostianov, I., Kachanov, M., and Ruud, J., J. Eng. Mater. Technol. 124, 246 (2002).Google Scholar
Wakui, T., Malzbender, J., Steinbrech, R.W., and Singheiser, L., to be presented at the International Conference on Thermal Spraying, ITSC 2003, Orlando, Florida.Google Scholar
Eldrige, J.I., Morscher, G.N., and Choi, S.R., Ceramic Eng. Sci. Proc. 23, 371 (2002).Google Scholar
Exadaktylos, G.E., Vardoulakis, I., Kourkoulis, S.K., Int. Solids Structures 38, 4091 (2001).CrossRefGoogle Scholar
Y-T. Cheng and C-M. Cheng, Appl. Phys. Lett. 73, 614 (1998).CrossRefGoogle Scholar
Lugscheider, E., Bobzin, K., Bärwulf, S., Etzkorn, A., Surf. Coat. Technol. 138, 9 (2000).Google Scholar