Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-26T23:51:53.577Z Has data issue: false hasContentIssue false

Determination of reversible hydrogen adsorption site in Ni-nanoparticle-dispersed amorphous silica for hydrogenseparation at high temperature

Published online by Cambridge University Press:  31 January 2011

Tsukasa Hirayama
Affiliation:
Japan Fine Ceramics Center, Atsuta-ku, Nagoya 456-8587, Japan
Get access

Abstract

The reversible hydrogen adsorption site in Ni-nanoparticle-dispersed amorphous silica (Si-O) was identified by analyzing the hydrogen adsorption behavior and the microstructure. The total amount of reversibly adsorbed hydrogen was evaluated from the total surface area of Ni and the Ni concentration in the composite. The total surface area of the Ni nanoparticles in each sample powder was calculated from the mean particle size of the Ni nanoparticles in the Si-O matrix using dark field images taken by transmission electron microscopy and high-angle annular dark-field images by scanning transmission electron microscopy. The estimated amount of reversibly adsorbed hydrogen was highly consistent with that obtained experimentally by hydrogen adsorption analysis, which suggested that reversible hydrogen adsorption occurred at the Ni/Si-O interface.

Type
Articles
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Ohi, J.Hydrogen energy cycle: An overview. J. Mater. Res. 20, 3180 (2005)CrossRefGoogle Scholar
2.Schlapbach, L., Zuttel, A.Hydrogen-storage materials for mobile applications. Nature 414, 353 (2001)Google Scholar
3.Singhal, S.C.Science and technology of solid-oxide fuel cells. MRS Bull. 25, 16 (2000)Google Scholar
4.Nenoff, T.M., Spontak, R.J., Aberg, C.M.Membranes for hydrogen purification: An important step toward a hydrogen-based economy. MRS Bull. 31, 735 (2006)CrossRefGoogle Scholar
5.Ogden, J.M.Hydrogen: The fuel of the future? Phys. Today 55, 69 (2002)CrossRefGoogle Scholar
6.Tsuru, T., Tsuge, T., Kubota, S., Yoshida, K., Yoshioka, T., Asaeda, M.Catalytic membrane reactor for methane steam reforming using porous silica membranes. Sep. Sci. Technol. 36, 3721 (2001)Google Scholar
7.Kurungot, S., Yamaguchi, T.Stability improvement of Rh/γ-Al2O3 catalyst layer by ceria doping for steam reforming in an integrated catalytic membrane reactor system. Catal. Lett. 92, 181 (2004)CrossRefGoogle Scholar
8.Nomura, M., Aida, H., Nakatani, K., Gopalakrishanan, S., Sugawara, T., Nakao, S., Seshimo, M., Ishikawa, T., Kawamura, M.Preparation of a catalyst composite silica membrane reactor for steam reforming reaction by using a counterdiffusion CVD method. Ind. Eng. Chem. Res. 45, 3950 (2006)CrossRefGoogle Scholar
9.Ioannides, T., Verykios, X.E.Application of a dense silica membrane reactor in the reactions of dry reforming and partial oxidation of methane. Catal. Lett. 36, 165 (1996)CrossRefGoogle Scholar
10.Ferreira-Aparicio, P., Rodriguez-Ramos, I., Guerrero-Ruiz, A.On the applicability of methane technology to the catalysed dry reforming of methane. Appl. Catal., A 237, 239 (2002)Google Scholar
11.Lee, D., Hacarlioglu, P., Oyama, S.T.Effect of pressure in membrane reactors: Trade off in permeability and equilibrium conversion in the catalytic reforming of CH4 with CO2 at high pressure. Top. Catal. 29, 45 (2004)Google Scholar
12.Shu, J., Grandjean, B.P., Van Neste, A., Kaliagnine, S.Catalytic palladium-based membrane reactors: A review. Can. J. Chem. Eng. 69, 1036 (1991)CrossRefGoogle Scholar
13.Sanches, J., Tsotsis, T.T.Current developments and future research in catalytic membrane reactorsFundamentals of Inorganic Membrane Science and Technology edited by A.J. Burggaraaf and L. Cot (Elsevier, Amsterdam, The Netherlands 1996)529CrossRefGoogle Scholar
14.Media, G.S., Barbieri, G., Dorioli, E.Theoretical and experimental analysis of methane steam reforming in a membrane reactor. Can. J. Chem. Eng. 77, 698 (1999)Google Scholar
15.Verweij, H., Lin, Y.S., Dong, J.Microporous silica and zeolite membranes for hydrogen purification. MRS Bull. 31, 756 (2006)Google Scholar
16.de Vos, R.M., Verweij, H.High selectivity, high flux silica membrane for gas separation. Science 279, 1710 (1998)Google Scholar
17.Prabhu, A.K., Oyama, S.T.Highly hydrogen selective ceramic membranes: Application to the transformation of greenhouse gases. J. Membr. Sci. 176, 233 (2000)Google Scholar
18.Nair, B.N., Yamaguchi, T., Okubo, T., Suematsu, H., Keizer, K., Nakao, S.Sol-gel synthesis of molecular sieving silica membranes. J. Membr. Sci. 135, 237 (1997)CrossRefGoogle Scholar
19.Yoshida, K., Hirano, Y., Fujii, H., Tsuru, T., Asaeda, M.Hydrothermal stability and performance of silica-zirconia membranes for hydrogen separation in hydrothermal conditions. J. Chem. Eng. Jpn. 34, 523 (2001)Google Scholar
20.Kusakabe, K., Shibao, F., Zhao, G., Sotowa, K., Watanabe, K., Saito, T.Surface modificaton of silica membranes in a tubular-type module. J. Membr. Sci. 215, 321 (2003)Google Scholar
21.Kanezashi, M., Asaeda, M.Hydrogen permeation characteristics and stability of Ni-doped silica membranes in steam at high temperature. J. Membr. Sci. 271, 86 (2006)Google Scholar
22.Igi, R., Yoshioka, T., Ikuhara, Y.H., Iwamoto, Y., Tsuru, T.Characterization of Co-doped silica for improved hydrothermal stability and application to hydrogen separation membranes at high temperatures. J. Am. Ceram. Soc. 91, 2975 (2008)CrossRefGoogle Scholar
23.Iwamoto, Y.Microporous ceramic membranes for high-temperature separation of hydrogen. Membrane 29, 258 (2004)Google Scholar
24.Ikuhara, Y.H., Mori, H., Saito, T., Iwamoto, Y.High temperature hydrogen adsorption properties of precursor derived nickel nanoparticle-dispersed amorphous silica. J. Am. Ceram. Soc. 90, 546 (2007)CrossRefGoogle Scholar
25.Yamazaki, S., Uno, N., Mori, H., Ikuhara, Y.H., Iwamoto, Y., Kato, T., Hirayama, T.TEM observation of hydrogen permeable Si-M-O(M=Ni or Sc) membranes synthesized on mesorporous anodic alumina capillary tubes. J. Mater. Sci. 41, 2679 (2006)Google Scholar
26.Richardson, J.T., Cale, T.S.Interpretation of hydrogen chemisorption on nickel catalysts. J. Catal. 102, 419 (1986)CrossRefGoogle Scholar
27.Pennycook, S.J.High resolution Z-contrast imaging of crystals. Ultramicroscopy 37, 14 (1991)Google Scholar
28.Buban, J.P., Matsunaga, K., Chen, J., Shibata, N., Ching, W.Y., Yamamoto, T., Ikuhara, Y.Grain boundary strengthening in alumina by rare earth impurities. Science 311, 212 (2006)Google Scholar
29.Shibata, N., Chisholm, M.F., Nakamura, A., Pennycook, S.J., Yamamoto, T., Ikuhara, Y.Nonstoichiometric dislocation cores in α-alumina. Science 316, 82 (2007)Google Scholar
30.Selwood, P.W.The chemisorptive bonding of hydrogen on nickel. J. Catal. 42, 148 (1976)Google Scholar
31.Anderson, J.R.Structure of Metallic Catalysts (Academic Press, London 1975)296Google Scholar
32.Bartholomew, C.H.Hydrogen adsorption on supported cobalt, iron, and nickel. Catal. Lett. 7, 27 (1990)Google Scholar
33.Reuel, R.C., Bartholomew, C.H.The stoichiometries of H2 and CO adsorptions on cobalt: Effect of support and preparation. J. Catal. 85, 63 (1984)CrossRefGoogle Scholar
34.Masaryk, J.S., Fulrath, R.M.Diffusivity of helium in fused silica. J. Chem. Phys. 59, 1198 (1973)Google Scholar
35.de Lange, R.S.A., Keizer, K., Burggraaf, A.J.Analysis and theory of gas transport in microporous sol-gel derived ceramic membranes. J. Membr. Sci. 104, 81 (1995)Google Scholar
36.Oyama, S.T., Lee, D., Hacarlioglu, P., Saraf, R.F.Theory of hydrogen permeability in nonporous silica membranes. J. Membr. Sci. 244, 45 (2004)Google Scholar