Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-10T21:08:29.303Z Has data issue: false hasContentIssue false

Derivation of interionic potentials using embedded quantum-mechanical clusters: Cation and anion impurities in MgO

Published online by Cambridge University Press:  31 January 2011

Ravindra Pandey
Affiliation:
Department of Physics, Michigan Technological University, Houghton, Michigan 49931
Jun Zuo
Affiliation:
Department of Physics, Michigan Technological University, Houghton, Michigan 49931
A. Barry Kunz
Affiliation:
Department of Physics, Michigan Technological University, Houghton, Michigan 49931
Get access

Abstract

The ICECAP methodology is used to derive interionic potentials of some cation and anion impurities in MgO, namely, Li+, Na+, K+, Be2+, H, S2−, and O2−. Analysis is given of the defect energies obtained by using the derived impurity potentials. Based on the available experimental data, comparison is made to justify the reliability of the derived impurity potential for Be2+. The calculated activation energy for Be2+ diffusion comes out to be 1.54 eV as compared to the experimental value of 1.60 eV, which is considered to be very satisfactory.

Type
Articles
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Catlow, C.R.A., Freeman, C.M., Islam, M.S., Jackson, R.A., Leslie, M., and Tomlinson, S. M., Philos. Mag. A58, 123 (1988).Google Scholar
2Harding, J. H., Harker, A. H., Keegstra, P. B., Pandey, R., Vail, J. M., and Woodward, C., Physica (B + C) 131, 151 (1985).CrossRefGoogle Scholar
3Meng, J., Pandey, R., Vail, J. M., and Kunz, A. B., Phys. Rev. B38, 10083 (1988).CrossRefGoogle Scholar
4Meng, J., Pandey, R., Vail, J. M., and Kunz, A. B., J. Phys: Condensed Matter 1, 6049 (1989).Google Scholar
5Dick, B. G. and Overhauser, A.W., Phys. Rev. 112, 90 (1958).CrossRefGoogle Scholar
6Kunz, A. B. and Vail, J. M., Phys. Rev. B38, 1058 (1988).CrossRefGoogle Scholar
7Pandey, R. and Vail, J. M., J. Phys.: Condensed Matter 1, 2801 (1989).Google Scholar
8Goalwin, P.W. and Kunz, A. B., Phys. Rev. B34, 2140 (1986).CrossRefGoogle Scholar
9Vail, J. M., Kunz, A. B., Meng, J., and Pandey, R. (Materials Research Society, Boston, MA, 1988), Abstract T5.38.Google Scholar
10Huzinaga, S., Gaussian Basis Sets for Molecular Calculations (Elsevier, New York, 1984).Google Scholar
11Seel, M. J., Kunz, A. B., and Hill, S., Phys. Rev. B39, 7949 (1989).CrossRefGoogle Scholar
12Pandey, R., Zuo, J., and Kunz, A. B., Phys. Rev. B39, 12565 (1989).CrossRefGoogle Scholar
13Sangster, M. J. and Stoneham, A. M., Philos. Mag. B43, 547 (1981).Google Scholar
14Slater, J. C. and Kirkwood, J. G., Phys. Rev. 37, 682 (1931).CrossRefGoogle Scholar
15Fowler, P.W., Knowles, P.J., and Pyper, N.C., Mol. Phys. 56, 83 (1985).CrossRefGoogle Scholar
16Pandey, R. and Harding, J. H., Philos. Mag. B49, 135 (1984).CrossRefGoogle Scholar
17Norgett, M. J., AERE Report, R7560 (1974).Google Scholar
18Harding, B. C., Phys. Status Solidi B 56, 645 (1973).CrossRefGoogle Scholar