Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-09T21:42:18.888Z Has data issue: false hasContentIssue false

Depth-sensing indentation tests in studying plastic instabilities

Published online by Cambridge University Press:  03 March 2011

N.Q. Chinh
Affiliation:
Department of General Physics, Eötvös University, Budapest, 1117 Budapest, Hungary
J. Gubicza
Affiliation:
Department of General Physics, Eötvös University, Budapest, 1117 Budapest, Hungary
Zs. Kovács
Affiliation:
Department of General Physics, Eötvös University, Budapest, 1117 Budapest, Hungary
J. Lendvai
Affiliation:
Department of General Physics, Eötvös University, Budapest, 1117 Budapest, Hungary
Get access

Abstract

This review surveys the phenomenon of plastic instabilities occurring in depth-sensing indentation measurements. Investigations presented focus on the characterization of Portevin–Le Châtelier type instabilities observed in different metal alloys during indentation. The effect of some important factors such as solute concentration, the formation of Guinier–Preston zones, and grain size and orientation are described and discussed. The phenomenon of plastic instabilities as serrated flow recently observed in bulk metallic glasses is also briefly reviewed.

Type
Reviews
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Lawn, B.R. and Howes, V.R., J. Mater. Sci. 16, 2745 (1981).Google Scholar
2.Sakai, M., Acta Metall. Mater. 41, 1751 (1993).CrossRefGoogle Scholar
3.Cook, R.F. and Pharr, G.M., J. Hard. Mater. 5, 179 (1994).Google Scholar
4.Giannakopoulos, A.E., Larsson, P.L. and Vestergaard, R., Int.J. Solids Struct. 31, 2679 (1994).Google Scholar
5.Larsson, P.L., Giannakopoulos, A.E., Söderlund, E., Rowcliffe, E. and Vestergaard, R., Int. J. Solids Struct. 33, 221 (1996).Google Scholar
6.Cheng, Y.T. and Cheng, C.M., Appl. Phys. Lett. 73, 614 (1998).Google Scholar
7.Venkatesh, T.A., Van Vliet, K.J., Giannakopoulos, A.E. and Suresh, S., Scr. Mater. 42, 833 (2000).CrossRefGoogle Scholar
8.Pethica, J.B., Hutchings, R. and Oliver, W.C., Philos. Mag. A 48, 593 (1983).Google Scholar
9.Atkinson, M., J. Mater. Res. 10, 2908 (1995).CrossRefGoogle Scholar
10.Mencik, J. and Swain, M.V., J. Mater. Res. 10, 1491 (1995).CrossRefGoogle Scholar
11.Nix, W.D. and Gao, H., J. Mech. Phys. Solids 46, 411 (1988).Google Scholar
12.Hector, L.G. and Schmid, S.R., Wear 215, 247 (1998).Google Scholar
13.Schmid, S.R. and Hector, L.G., Wear 215, 257 (1998).Google Scholar
14.Zeng, K. and Chiu, C-h., Acta Mater 49, 3539 (2001).Google Scholar
15.Krell, A. and Schadlich, S., Mater. Sci. Eng. A 307, 172 (2001).Google Scholar
16.Chinh, N.Q., Csikor, F., Kovács, Zs. and Lendvai, J., J. Mater. Res. 15, 1037 (2000).Google Scholar
17.Ma, X., Yoshida, F. and Shinbata, K., Mater. Sci. Eng. A 344, 296 (2003).CrossRefGoogle Scholar
18.Fröhlich, F., Grau, P. and Grellmann, W., Phys. Status Solidi (a) 42 79 (1977).Google Scholar
19.Gubicza, J., Juhász, A., Tasnádi, P., Arató, P. and Vörös, G., J. Mater. Sci. 31, 3109 (1996).CrossRefGoogle Scholar
20.Gubicza, J., Juhász, A. and Lendvai, J., J. Mater. Res. 11, 2964 (1996).Google Scholar
21.Gubicza, J., Juhász, A., Arató, P., Szommer, P., Tasnádi, P. and Vörös, G., J. Mater. Sci. Lett. 15, 2141 (1996).Google Scholar
22.Pharr, G.M., Oliver, W.C. and Brotzen, F.R., J. Mater. Res. 7, 613 (1992).Google Scholar
23.Oliver, W.C. and Pharr, G.M., J. Mater. Res. 7, 1564 (1992).CrossRefGoogle Scholar
24.Brotzen, F.R., Int. Mater. Rev. 39, 24 (1994).Google Scholar
25.Pool, W.J., Ashby, M.F. and Fleck, N.A., Scr. Mater. 34, 559 (1996).Google Scholar
26.Bucaille, J.L., Stauss, S., Felder, E. and Michler, J., Acta Mater. 51, 1663 (2003).Google Scholar
27.Li, Z., Cheng, Y.T., Yang, H.T. and Chandrasekar, S., Surf. Coat. Technol. 154, 124 (2002).Google Scholar
28.Wolf, B., Swain, M., Kempf, M. and Paufler, P., J. Mater. Sci. 35, 723 (2000).Google Scholar
29.Pharr, G.M., Oliver, W.C. and Clarke, D.R., Scr. Metall. 23, 1949 (1989).Google Scholar
30.Stone, D.S. and Yoder, K.B., J. Mater. Res. 9, 2524 (1994).Google Scholar
31.Hainsworth, S.V., McGurk, M.R. and Page, T.F., Surf. Coat. Technol. 102, 97 (1998).CrossRefGoogle Scholar
32.Berasategui, E.G. and Page, T.F., Surf. Coat. Technol. 163–164, 491 (2003).Google Scholar
33.Bérces, G., Chinh, N.Q., Juhász, A. and Lendvai, J., Acta Mater. 46, 2029 (1998).Google Scholar
34.Bérces, G., Chinh, N.Q., Juhász, A. and Lendvai, J., J. Mater. Res. 13, 1411 (1998).Google Scholar
35.Chinh, N.Q., Németh, G., Fekete, A. and Lendvai, J., Alum. Alloys 2, 621 (1998).Google Scholar
36.Chinh, N.Q., Csikor, F., Gy. Bérces, and J. Lendvai, Alum. Alloys 2, 979 (1998).Google Scholar
37.Chinh, N.Q., Csikor, F. and Lendvai, J., Mater. Sci. Forum 331–337, 1007 (2000).Google Scholar
38.Kovács, Zs., Chinh, N.Q. and Lendvai, J., J. Mater. Res 16, 1171 (2001).Google Scholar
39.Chinh, N.Q., Horváth, Gy., Kovács, Zs. and Lendvai, J., Mater. Sci. Eng. A 324, 219 (2002).Google Scholar
40.Kovács, Zs., Chinh, N.Q., Lendvai, J. and Vörös, G., Mater. Sci. Eng. A 325, 255 (2002).Google Scholar
41.Kovács, Zs., Chinh, N.Q., Lendvai, J., Horita, Z. and Langdon, T.G., Mater. Sci. Forum 396–402, 1073 (2002).Google Scholar
42.Kovács, Zs., Fátay, D., Nyilas, K., Nyilas, K. and Lendvai, J., J. Eng. Mater. Technol 124, 23 (2002).CrossRefGoogle Scholar
43.Neuhäuser, H. and Schwink, C. in Materials Science and Technology, edited by Mughrabi, H. (VCH, Weinheim, Germany, 1993), Vol. 6, p. 191.Google Scholar
44.Bréchet, Y.J.M., Key Eng. Mater 103, 21 (1995).Google Scholar
45.McCormick, P.G., Scr. Metall. 15, 441 (1982).Google Scholar
46.Thevenet, D., Mliha-Touati, M. and Zeghloul, A., Mater. Sci. Eng. A 266, 175 (1999).Google Scholar
47.Penning, P., Acta Metall. 20, 1169 (1972).Google Scholar
48.McCormick, P.G., Acta Metall. 20, 351 (1972).Google Scholar
49.Kubin, L.P. and Estrin, Y., Acta Metall. 38, 697 (1990).CrossRefGoogle Scholar
50.Bréchet, Y. and Estrin, Y., Acta Metall. 43, 955 (1995).Google Scholar
51.Kok, S., Bharathi, M.S., Beaudoin, A.J., Fressengeas, C., Ananthakrishna, G., Kubin, L.P. and Lebyodkin, M., Acta Mater. 51, 3651 (2003).Google Scholar
52.Král, R., LukáČ, P., LukáČ, P. and JaneČek, M., Mater. Sci. Forum 217–222, 1025 (1996).Google Scholar
53.Pink, E. and Grinberg, A., Acta Metall. 30, 2153 (1982).Google Scholar
54.Cottrell, A.H., Philos. Mag. 44, 829 (1953).Google Scholar
55.Van den Beukel, A., Phys. Status Solidi (a) 30, 197 (1975).CrossRefGoogle Scholar
56.Robinson, J.M. and Shaw, M.P., Int. Mater. Rev. 39, 113 (1994).Google Scholar
57.Robinson, J.M., Int. Mater. Rev. 39, 217 (1994).Google Scholar
58.Kubin, L.P., Chihab, K. and Estrin, Y., Acta Metall. 36, 2707 (1988).Google Scholar
59.McCormick, P.G., Venkadesan, S. and Ling, C.P., Scr. Metall. 29, 1159 (1993).Google Scholar
60.McCormick, P.G. and Ling, C.P., Acta Metall. Mater. 43, 1969 (1995).Google Scholar
61.LukáČ, P., Balík, J. and Chmelík, F., Mater. Sci. Eng. A 234–236, 45 (1997).Google Scholar
62.Zbib, H.M. and Aifantis, E.C., Scripta Metall. 22, 1331 (1988).Google Scholar
63.Hähner, P., Mater. Sci. Eng. A 164, 23 (1993).CrossRefGoogle Scholar
64.McCormick, P.G., Acta Metall. 30, 2079 (1982).Google Scholar
65.Schuh, C.A. and Nieh, T.G., Acta Mater. 51, 87 (2003).CrossRefGoogle Scholar
66.Bobji, M.S. and Biswas, S.K. in Recent Advances in Metallurgical Processes, edited by Sastry, D.H., Dwarakadasa, E.S., Iyengar, G.N.K., and Subramanian, S., (New Age Int. Publishers, New Delhi, 1977), p. 1223.Google Scholar
67.Poisl, W.H., Oliver, W.C. and Fabes, B.D., J. Mater. Res. 10, 2024 (1995).Google Scholar
68.Král, R. and LukáČ, P., Mater. Sci. Eng. A 234–236, 786 (1997).Google Scholar
69.Cahn, R.W., Physical Metallurgy (American Elsevier Publishing Co. Inc., New York, 1970).Google Scholar
70.Pink, E., Acta Metall. 37, 1773 (1989).Google Scholar
71.Kalk, A., Nortmann, A., and Ch. Schwink, Philos. Mag. A 72, 1239 (1995).Google Scholar
72.Iwahashi, Y., Wang, J., Horita, Z., Nemoto, M. and Langdon, T.G., Scr. Mater. 35, 143 (1996).Google Scholar
73.Furukawa, M., Iwahashi, Y., Horita, Z., Nemoto, M. and Langdon, T.G., Mater. Sci. Eng. A 257, 328 (1998).Google Scholar
74.Furukawa, M., Horita, Z., Nemoto, M. and Langdon, T.G., J. Mater. Sci. 36, 2835 (2001).Google Scholar
75.Dao, M., Chollacoop, N., Van Vliet, K.J., Venkatesh, T.A. and Suresh, S., Acta Mater 49, 3899 (2001).Google Scholar
76.Vaidyanathan, R., Dao, M., Ravichandran, G. and Suresh, S., Acta Mater 49, 3781 (2001).Google Scholar
77.Tabor, D., Microindentation Techniques in Materials Science and Engineering, ASTM STP 889, edited by Blau, P.J. and Lawn, B.R. (American Society for Testing and Materials, Philadelphia, PA, 1986), p. 129.Google Scholar
78.Wright, W.J., Saha, R. and Nix, W.D., Mater. Trans. JIM 42, 642 (2001).Google Scholar
79.Kim, J.J., Choi, Y., Suresh, S. and Argon, A.S., Science 295, 654 (2002).Google Scholar
80.Golovin, Y.I., Ivolgin, V.I., Khonik, V.A., Kitagawa, K., andA.I. Tyurin, Scr. Mater. 45, 947 (2001).Google Scholar
81.Schuh, C.A., Nieh, T.G. and Kawamura, Y., J. Mater. Res. 17, 1651 (2002).Google Scholar
82.Nieh, T.G., Schuh, C.A., Wadsworth, J. and Li, Y., Intermetallics 10, 1177 (2002).Google Scholar
83.Benameur, T., Hajlaoui, K., Yavari, A.R., Inoue, A. and Rezgui, B., Mater. Trans. JIM 43, 2617 (2002).Google Scholar
84.Jiang, W.H. and Atzmon, M., J. Mater. Res. 18, 75 (2003).Google Scholar
85.Gouldstone, A., Koh, H.J., Zeng, K.Y., Giannakopoulos, A.E. and Suresh, S., Acta Mater. 48, 2277 (2000).CrossRefGoogle Scholar