Published online by Cambridge University Press: 03 March 2011
The deposition of diamond phase carbon films on stainless steel substrates by an ionized deposition technique has been studied. A molybdenum grid used during argon ion sputtering had a decisive role in improving the morphology and adhesion ability of the substrate surface. The chemical composition of the surface was obtained by x-ray photoelectron spectroscopy, indicating the reduction of oxygen, carbon, and other contamination, while the surface morphology of the substrate obtained by scanning electron microscopy showed less roughness with a partially smooth surface. Attempts to extract the deposited films from the pretreated substrate surface by a superadhesive agent with an adhesion of 250 kg/cm2 failed, yielding a much stronger adhesion for the pretreated surface. This fact was also supported by examining the surface morphology, hardness, and the resistivity of the films deposited on the same substrates. As for the crystal structure of diamond phase carbon films on stainless steel, selected area diffraction patterns obtained from transmission electron microscopy suggested a mixture of amorphous carbon and polycrystalline diamond components.