Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-23T12:45:11.308Z Has data issue: false hasContentIssue false

Deposition of diamond onto aluminum by electron cyclotron resonance microwave plasma-assisted CVD

Published online by Cambridge University Press:  31 January 2011

C.R. Eddy Jr.
Affiliation:
Naval Research Laboratory, Code 4670, Washington, DC 20375-5000
D.L. Youchison
Affiliation:
Naval Research Laboratory, Code 4670, Washington, DC 20375-5000
B.D. Sartwell
Affiliation:
Naval Research Laboratory, Code 4670, Washington, DC 20375-5000
K.S. Grabowski
Affiliation:
Naval Research Laboratory, Code 4670, Washington, DC 20375-5000
Get access

Abstract

Diamond crystallites and thin films have been deposited onto polycrystalline aluminum substrates utilizing an electron cyclotron resonance microwave plasma-assisted chemical vapor deposition (ECR-PACVD) method. For all depositions, the substrates were biased to +40 V dc with respect to ground and their temperature was maintained at 500 °C. Similar deposits were obtained from two different feedgas systems at a total pressure of 1.33 Pa (10 mTorr). The first system consisted of a carbon monoxide (CO) and hydrogen (H2) mixture (CO:H2 = 20:80), and the second was a methane (CH4), oxygen (O2), and hydrogen (H2) mixture (CH4:O2:H2 = 21:10:69). The deposits were subsequently characterized by scanning electron microscopy, micro-Raman spectroscopy, and x-ray diffraction. The results of these analyses indicate that polycrystalline diamond was deposited onto aluminum substrates, as both individual crystallites and continuous films.

Type
Articles
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Dismukes, J.P., Busch, J.V., Nallicheri, N.V., and Walton, K.R., in Applications of Diamond Films and Related Materials, edited Tzeng, by Y., Yoshikawa, M., Murakawa, M., and Feldman, A. (Elsevier Science Publishing Co., New York, 1991), p. 635.Google Scholar
2Spear, K. E., J. Am. Ceram. Soc. 72, 171 (1989).Google Scholar
3Angus, J. C. and Hayman, C. C., Science 241, 913 (1988).CrossRefGoogle Scholar
4Kawato, T. and Kondo, K., Jpn. J. Appl. Phys. 26, 1429 (1987); Y. Hirose and Y. Terasawa, ibid., 25, 1519 (1986).Google Scholar
5Matsumoto, O., Toshima, H., and Kanzaki, Y., Thin Solid Films 128, 341 (1985); N. Fujimori, T. Imai, and A. Doi, Vacuum 36, 99 (1986).Google Scholar
6Snail, K.A., Oates, D.B., Butler, J.E., and Hanssen, L.M., in New Diamond Science and Technology, edited by Messier, R., Glass, J. T., Butler, J. E., and Roy, R. (Materials Research Society, NDST-2, Pittsburgh, PA, 1991), p. 503.Google Scholar
7Eddy, C. R. Jr., Sartwell, B. D., and Youchison, D. L., Surf. Coat. Technol. 48, 69 (1991).Google Scholar
8Liou, Y., Inspektor, A., Weimer, R., and Messier, R., Appl. Phys. Lett. 55, 631 (1989).Google Scholar
9Nakao, S., Maruno, S., Noda, M., Kusakabe, H., and Shimuzu, H., J. Cryst. Growth 99, 1215 (1990).CrossRefGoogle Scholar
10Yarbrough, W., Badzian, A.R., Pickerell, D., Liou, Y., and Inspektor, A., J. Cryst. Growth 99, 1177 (1990).Google Scholar
11Patterson, D.E., Bai, B.J., Chu, C.J., Hauge, R.H., and Margrave, J.L., in New Diamond Science and Technology, edited by Messier, R., Glass, J. T., Butler, J. E., and Roy, R. (Materials Research Society, NDST-2, Pittsburgh, PA, 1991), p. 433.Google Scholar
12Wei, J., Kawarada, H., Suzuki, J., and Hiraki, A., Jpn. J. Appl. Phys. 29, L1483 (1990).Google Scholar
13Ihara, M., Maeno, H., Miyamoto, K., and Komiyama, H., to be published in Proceedings of Diamond Films '91.Google Scholar
14Suzuki, J., Kawarada, H., Mar, K. -S., Wei, J., Yokota, Y., and Hiraki, A., Jpn. J. Appl. Phys. 28, L281 (1989).Google Scholar
15Wei, J., Kawarada, H., Suzuki, J., and Hiraki, A., J. Cryst. Growth 99, 1201 (1990).CrossRefGoogle Scholar
16Hiraki, A., Kawarada, H., Wei, J., and Suzuki, J., Surf. Coat. Technol. 43/44, 10 (1990).Google Scholar
17Yugo, S., Kanai, T., Kimura, T., and Muto, T., Appl. Phys. Lett. 58, 1036 (1991).Google Scholar
18Suzuki, J., Kawarada, H., Wei, J., and Hiraki, A., in Extended Abstracts No. 19, Technology Update on Diamond Films, edited by Chang, R. P. H., Nelson, D., and Hiraki, A. (Materials Research Society, Pittsburgh, PA, 1989), p. 51.Google Scholar
19Youchison, D. L., Eddy, C.R. Jr., and Sartwell, B.D., to be published in J. Vac. Sci. Technol. A.Google Scholar
20Solin, S.A. and Ramdas, A.K., Phys. Rev. B 1, 1687 (1970).Google Scholar
21Nemanich, R.J. and Solin, S.A., Phys. Rev. B 20, 392 (1979).Google Scholar
22Buckley, R.G., Moustakas, T.D., Ye, L., and Varon, J., J. Appl. Phys. 66, 3595 (1989).CrossRefGoogle Scholar
23Wada, N. and Solin, S.A., Physica 105B, 353 (1981).Google Scholar
24Nemanich, R.J., Glass, J.T., Lucovsky, G., and Shroder, R.E., J. Vac. Sci. Technol. A 6, 1783 (1988).Google Scholar
25Knight, D. S., Weimer, R., Pilione, L., and White, W. B., Appl. Phys. Lett. 56, 1320 (1990).Google Scholar
26Guy, A. G. and Hren, J. J., Elements of Physical Metallurgy (Addison-Wesley Publishing Co., Reading, MA, 1974), p. 440; C. S. Barrett and T. B. Massalski, Structure of Metals (Pergamon Press, New York, 1980), p. 568.Google Scholar
27Metals Handbook, Vol. 9: Metallography andMicrostructures, 9th ed. (ASM, Metals Park, OH, 1985), pp. 692705.Google Scholar