Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-29T15:12:56.460Z Has data issue: false hasContentIssue false

Deposition characteristics and microstructures of the high Tc superconducting Y1Ba2Cu3O7−δ thin films prepared by MOCVD

Published online by Cambridge University Press:  31 January 2011

Sang Ho Kim
Affiliation:
Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, P.O. Box 150, Cheongryang, Seoul, Korea
Chang Hyun Cho
Affiliation:
Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, P.O. Box 150, Cheongryang, Seoul, Korea
Kwang Soo No
Affiliation:
Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, P.O. Box 150, Cheongryang, Seoul, Korea
John S. Chun
Affiliation:
Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, P.O. Box 150, Cheongryang, Seoul, Korea
Get access

Abstract

Superconducting Y1Ba2Cu3O7−δ films were prepared on the MgO (100) and SrTiO3 (100) single crystals using metal organic chemical vapor deposition (MOCVD) of β-diketone metal chelates of Y(thd)3, Ba(th)2, and Cu(thd)2. The evaporation kinetics of Y(thd)3, Ba(thd)2, and Cu(thd)2 and the ratios of deposited to evaporated mole percents of Y, Ba, and Cu cations were studied. The microstructure of Y1Ba2Cu3O7−δ films deposited using MOCVD was observed using scanning electron microscopy and transmission electron microscopy to investigate surface morphology change with the film composition and transformation twin structures. The experimental results showed that the volatility of Ba(thd)2 did not perceptively increase with decreasing evaporation pressure from 10 Torr to 5 Torr, but that of Y(thd)3 or Cu(thd)2 increased with the pressure decrease. The ratio of deposited to evaporated mole percents of Ba cation was smaller than those of Y and Cu cations. Therefore, Ba must be evaporated more than the stoichiometric amount for Y1Ba2Cu3O7−δ in order to obtain single phase Y1Ba2Cu3O7−δ films. The surface morphology of the Y1Ba2Cu3O7−δ films showed perculiar changes with slight composition changes. The transition onset and zero resistance temperatures of typical stoichiometric film deposited on MgO were 93 K and 91 K, respectively. The Y1Ba2Cu3O7−δ films had about 50 nm grain size, and most grains consisted of transformation twins. The critical current density of a film deposited on SrTiO3 was 105 A/cm2 at 77 K and zero magnetic field.

Type
Articles
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Berry, A. D., Gaskill, D. K., Holm, R. T., Cukauskas, E. J., Kaplan, R., and Henry, R. L., Appl. Phys. Lett. 52, 1743 (1988).CrossRefGoogle Scholar
2Zhang, K., Kwak, B. S., Boyd, E. P., Wright, A. C., and Erbil, A., Appl. Phys. Lett. 54, 380 (1989).CrossRefGoogle Scholar
3Panson, A. J., Charles, R. G., Schmidt, D. N., Szedorh, J. R., Machiko, G. J., and Braginski, A. I., Appl. Phys. Lett. 53, 1756 (1988).CrossRefGoogle Scholar
4Schmaderer, F. and Wahl, G., Proc. 7th Euro. Conf. on CVD, C5119 (1989).Google Scholar
5Murakami, M., Morita, M., Doi, K., and Miyamoto, K., Jpn. J. Appl. Phys. 28, 1189 (1989).CrossRefGoogle Scholar
6Yamane, H., Kurosawa, H., and Hirai, T., Proc. 7th Euro. Conf. on CVD, C5131 (1989).Google Scholar
7Tsuruoka, T., Kawasaki, R., and Abe, H., Jpn. J. Appl. Phys. 28, L1800 (1989).CrossRefGoogle Scholar
8Michikami, O., Asahi, M., and Asano, H., Jpn. J. Appl. Phys. 28, L448 (1989).CrossRefGoogle Scholar
9Terashima, T. and Bando, Y., Appl. Phys. Lett. 53, 2232 (1988).CrossRefGoogle Scholar
10Kwo, J., Hsieh, T. C., Fleming, R. M., Hong, M., Liou, S. H., Davidson, B. A., and Feldman, L. C., Phys. Rev. B 36, 4039 (1987).CrossRefGoogle Scholar
11Dijkkamp, D., Venkatesan, T., Wu, D., Saheen, S. A., Jisrawi, N., Minlee, Y. H., Mclean, W. L., and Croft, M., Appl. Phys. Lett. 51, 619 (1987).CrossRefGoogle Scholar
12Matsuno, S., Uchikawa, F., and Yoshizaki, K., Jpn. J. Appl. Phys. 29, L947 (1990).CrossRefGoogle Scholar
13Shinohara, K., Munakata, F., and Yamanaka, H., Jpn. J. Appl. Phys. 27, L1683 (1988).CrossRefGoogle Scholar
14Schwarberg, J. E., Sievers, R. E., and Moshier, R. W., Anal. Chem. 42, 1828 (1970).CrossRefGoogle Scholar
15Zhao, Y., Zhang, S., Zhou, G., Zchen, Z. W., Qian, Y., and Zang, Q., Solid State Commun. 64, 493 (1987).Google Scholar
16Nieh, C. W. and Anthony, L., Appl. Phys. Lett. 56, 2138 (1990).CrossRefGoogle Scholar
17Yang, N., Kung, J. H., Chen, Y. C., Kao, C. C., Wu, P. T., and Chin, T. S., in Extended Abstracts No. 14, High-Temperature Super-conductors II, edited by Capone, D. W. II, Butler, W. H., Batlogg, B., and Chu, C. W. (Materials Research Society, Pittsburgh, PA, 1988), p. 331.Google Scholar
18Watanabe, K., Matsushita, T., Kobayashi, N., Kawabe, H., Aoyagi, E., Hiraga, K., Yamane, H., Kurosawa, H., Hirai, T., and Muto, Y., Appl. Phys. Lett. 56, 1490 (1990).CrossRefGoogle Scholar
19Ramesh, R., Hwang, D., Ravi, T. S., Inam, A., Barner, J. B., Nazar, L., Chan, S. W., Chen, C. Y., Dutta, B., Venkatesan, T., and Wu, X. O., Appl. Phys. Lett. 56, 2243 (1990).CrossRefGoogle Scholar