Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-23T12:06:45.811Z Has data issue: false hasContentIssue false

Deposition and characterization of YBa2Cu3O7−δ thin films grown in situ by sequential ion beam sputtering

Published online by Cambridge University Press:  31 January 2011

J.A. Kittl*
Affiliation:
W. M. Keck Laboratory of Engineering Materials, California Institute of Technology, Pasadena, California 91125
W.L. Johnson
Affiliation:
W. M. Keck Laboratory of Engineering Materials, California Institute of Technology, Pasadena, California 91125
C.W. Nieh
Affiliation:
Hughes Research Laboratory, Malibu, California 90265
*
a)Current address: Gordon McKay Laboratory, Harvard University, Cambridge, Massachusetts 02138.
Get access

Abstract

We investigated the in situ growth of YBa2Cu3O7−δ superconducting thin films by a sequential ion beam sputtering technique, studying the relations among deposition parameters, structural and superconducting properties. The films were deposited following the stacking sequence of YBa2Cu3O7−δ, with individual layer thicknesses nominally equal to one monolayer. O2 was supplied during deposition. Predominantly c-axis oriented films were grown on (100) SrTiO3, (100) MgO, and oxidized Si (SiO2/Si) substrates. The microstructure and film-substrate orientation relations were studied by transmission electron microscopy. X-ray studies showed the presence of homogeneous and inhomogeneous strains along the c-direction that persisted after low temperature oxygen anneals. Resistivity measurements showed correlations between the superconducting transition characteristics and the lattice distortions along the c-direction. The effect of deposition parameters on the lattice distortions was investigated, finding that the c-axis lattice parameter was larger in films grown at lower temperatures. This was interpreted in terms of the thermally activated dissociation of O2 at the film surface during growth. We assumed that the c-axis lattice expansion was due to kinetic limitations to the incorporation of oxygen into the film during growth. This led to a consistent description of the results obtained in this work and the O2 pressure dependence of the c-axis lattice expansion reported for other in situ techniques. Studies were performed on films grown by this technique as well as on films grown in situ by magnetron sputtering in an attempt to elucidate the nature of the defect structure causing the c-axis lattice distortions.

Type
Articles
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Adachi, H., Hirochi, K., Setsune, K., Kitabatake, M., and Wasa, K., Appl. Phys. Lett. 51, 2263 (1987).Google Scholar
2.Li, H. C., Linker, G., Ratzel, F., Smithey, R., and Geerk, J., Appl. Phys. Lett. 52, 1098 (1988).Google Scholar
3.Geerk, J., Linker, G., and Meyer, O., Mater. Sci. Rep. 4,193 (1989).CrossRefGoogle Scholar
4.Witanachchi, S., Patel, S., Kwok, H. S., and Shaw, D. T., Appl. Phys. Lett. 54, 578 (1989).Google Scholar
5.Chang, C. C., Wu, X. D., Inam, A., Hwang, D. M., Venkatesan, T., Barboux, P., and Tarascon, J. M., Appl. Phys. Lett. 53, 517 (1988).CrossRefGoogle Scholar
6.Terashima, T., lijima, K., Yamamoto, K., Bando, Y., and Mazaki, H., Jpn. J. Appl. Phys. 27, L91 (1988).Google Scholar
7.Kwo, J., Hong, M., Trevor, D. J., Fleming, R. M., White, A. E., Farrow, R. C., Kortan, A. R., and Short, K. T., Appl. Phys. Lett. 53, 2683 (1988).CrossRefGoogle Scholar
8.Fujita, J., Yoshitake, T., Kamijo, A., Satoh, T., and Igarashi, H., J. Appl. Phys. 64, 1292 (1988).CrossRefGoogle Scholar
9.Eom, C. B., Sun, J. Z., Yamamoto, K., Marshall, A. F., Luther, K. E., Geballe, T. H., and Laderman, S. S., Appl. Phys. Lett. 55, 595 (1989).CrossRefGoogle Scholar
10.Eom, C. B., Sun, J. Z., Lairson, B. M., Streiffer, S. K., Marshall, A. F., Yamamoto, K., Anlage, S. M., Bravman, J. C., Geballe, T. H., Laderman, S. S., Taber, R. C., and Jacowitz, R. D., Physica C 171, 354 (1990).Google Scholar
11.Fujita, J., Tatsumi, T., Yoshitake, T., Kamijo, A., and Igarashi, H., Appl. Phys. Lett. 54, 2364 (1989).Google Scholar
12.Kittl, J. A., Nieh, C. W., Lee, D. S., and Johnson, W. L., Mater. Lett. 9, 336 (1990).Google Scholar
13.Matijasevic, V., Rosenthal, P., Shinohara, K., Marshall, A. F., Hammond, R. H., and Beasley, M. R., J. Mater. Res. 6, 682 (1991).Google Scholar
14.Roas, B., Hensel, B., Endres, G., Schultz, L., Klaumunzer, S., and Saemann-Ischenko, G., Physica C 162164, 135 (1989).Google Scholar
15.Gupta, A., Hussey, B. W., Kussmaul, A., and Segmuller, A., Appl. Phys. Lett. 57, 2365 (1990).CrossRefGoogle Scholar
16.Gupta, A. and Hussey, B. W., Appl. Phys. Lett. 58, 1211 (1991).Google Scholar
17.Kittl, J. A., Nieh, C. W., Lee, D. S., and Johnson, W. L., Appl. Phys. Lett. 56, 2468 (1990).CrossRefGoogle Scholar
18.Hellman, E. S., Schlom, D. G., Marshall, A. F., Streiffer, S. K., Harris, J. S., Jr. Beasley, M. R., Bravman, J. C., Geballe, T. H., Eckstein, J. N., and Webb, C., J. Mater. Res. 4, 476 (1989).CrossRefGoogle Scholar
19.Kittl, J. A., Nieh, C. W., and Johnson, W. L., J. Appl. Phys. 69, 6710 (1991).CrossRefGoogle Scholar
20.Kittl, J. A., Ph.D. Thesis, California Institute of Technology (1991).Google Scholar
21.Klug, H. P. and Alexander, L. E., X-Ray Diffraction Procedures (Wiley, New York, 1974), pp. 660665.Google Scholar
22.Chu, W-K., Mayer, J. W., and Nicolet, M. A., Backscattering Spectrometry (Academic Press, Orlando, FL, 1978).CrossRefGoogle Scholar
23.Beyers, R. and Ahn, B. T., in Annual Review of Materials Science, edited by Huggins, R. A. (Annual Reviews, Palo Alto, CA, 1991), Vol. 21, pp. 335372.Google Scholar
24.Eom, C. B., Marshall, A. F., Laderman, S. S., Jacowitz, R. D., and Geballe, T. H., Science 249, 1549 (1990).Google Scholar
25.Inam, A., Rogers, C. T., Ramesh, R., Remschnig, K., Farrow, L., Hart, D., Venkatesan, T., and Wilkens, B., Appl. Phys. Lett. 57, 2484 (1990).CrossRefGoogle Scholar
26.Ramesh, R., Chang, C. C., Ravi, T. S., Hwang, D. M., Inam, A., Xi, X. X., Li, Q., Wu, X. D., and Venkatesan, T., Appl. Phys. Lett. 57, 1065 (1990)Google Scholar
27.Ravi, T. S., Hwang, D. M., Ramesh, R., Chan, Siu Wai, Nazar, L., Chen, C. Y., Inam, A., and Venkatesan, T., Phys. Rev. B 42, 10141 (1990).Google Scholar
28.Koren, G., Gupta, A., and Baseman, R. J., Appl. Phys. Lett. 54, 1920 (1989).CrossRefGoogle Scholar
29.Yamamoto, K., Lairson, B. M., Eom, C. B., Hammond, R. H., Bravman, J. C., and Geballe, T. H., Appl. Phys. Lett. 57, 1936 (1990).Google Scholar
30.Cava, R. J., Hewat, A. W., Hewat, E. A., Batlogg, B., Marezio, M.Rabe, K. M., Krajewski, J. J., Peck, W. F., Jr. and Rupp, L. W., Jr., Physica C 165, 419 (1990).CrossRefGoogle Scholar
31.Jorgensen, J. D., Veal, B. W., Paulikas, A. P., Nowicki, L. J., Crabtree, G. W., Claus, H., and Kwok, W. K., Phys. Rev. B 41, 1863 (1990).Google Scholar
32.Michikami, O., Asahi, M., and Asano, H., Jpn. J. Appl. Phys. 28, L448 (1989).CrossRefGoogle Scholar