Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-22T22:12:13.506Z Has data issue: false hasContentIssue false

Dependence of fracture toughness on annealing temperature in Pb(Zr0.52Ti0.48)O3 thin films produced by metal organic decomposition

Published online by Cambridge University Press:  31 January 2011

X. J. Zheng*
Affiliation:
Institute of Fundamental Mechanics and Material Engineering, Xiangtan University, Hunan, 411105, People's Republic of China
Y. C. Zhou
Affiliation:
Institute of Fundamental Mechanics and Material Engineering, Xiangtan University, Hunan, 411105, People's Republic of China
H. Zhong
Affiliation:
Department of Civil Engineering, Tsinghua University, Beijing 100084, People's Republic of China
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Lead zirconate titanate Pb(Zr0.52Ti0.48)O3 (PZT) thin films were grown on Pt/Ti/Si(001) by metal organic decomposition (MOD). The effects of the annealing procedure on the crystalline microstructure, hysteresis loops, and fracture toughness of PZT thin films were investigated by x-ray diffraction, RT66A analyzer, and Vickers indentation method, respectively. It was found that the fracture toughness, crystalline microstructure, and ferroelectric properties depend on the annealing procedure. When the annealing temperature is in the range of 600–750 °C, the higher the annealing temperature, the better the crystalline quality. The fracture pattern diagram, as a function of indentation load and annealing temperature, was introduced to describe the fracture characteristics of PZT thin film induced by indentation load. With the increase of annealing temperature from 600 °C to 750 °C, the fracture toughness of PZT thin films decreased from 0.492 MPa m1/2 to 0.478 MPa m1/2.

Type
Articles
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Thielsch, R., Hassler, W., and Bruckner, W., Phys. Stat. Sol. A 156, 199 (1996).CrossRefGoogle Scholar
2.Haertling, G.H., J. Am. Ceram. Soc. 82, 797 (1999).CrossRefGoogle Scholar
3.Verardi, P., Dinescu, M., Craciun, F., and Sandu, V., Thin Solid Films 311, 171 (1997).CrossRefGoogle Scholar
4.Choi, W.K., Choi, S.K., and Lee, H.M., J. Mater. Res. 14, 4677 (1999).CrossRefGoogle Scholar
5.Okada, M., Tominaga, K., Araki, T., Katayama, S., and Sakashita, Y., Jpn. J. Appl. Phys. 29, 719 (1990).Google Scholar
6.Zhu, W., Liu, Z.Q., Lu, W., Tse, M.S., Tan, H.S., and Yao, X., J. Appl. Phys. 79, 4283 (1996).CrossRefGoogle Scholar
7.Floquet, N., Hector, J., and Gaucher, P., J. Appl. Phys. 84, 3815 (1998).CrossRefGoogle Scholar
8.Shinichi, S., Akira, T., and Kaoru, T., Jpn. J. Appl. Phys. 30(9B), 2170 (1991).Google Scholar
9.Sakashita, Y. and Segawa, H., J. Appl. Phys. 73, 7857 (1993).CrossRefGoogle Scholar
10.Ren, S.B., Lu, C.J., Liu, J.S., Shen, H.M., and Wang, Y.N., Phys. Rev. B 54, R14337 (1996).CrossRefGoogle Scholar
11.Zhu, J.S., Zhang, X.B., Zhu, Y.F., and Desu, S.B., J. Appl. Phys. 38, 1610 (1998).CrossRefGoogle Scholar
12.Bahr, D.F., Robach, J.S., Wright, J.S., Fracis, L.F., and Gerberich, W.W., Mater. Sci. Eng. A 259, 126 (1999).CrossRefGoogle Scholar
13.Yang, Z.Y., Zhou, Y.C., and Zheng, X.J., in Mechanics and Material Engineering for Science and Experiment, edited by Zhou, Yichun, Gu, Yuanxian, and Li, Zheng (Science Press, New York, 2001), p. 259.Google Scholar
14.Diao, D.F., Kato, K., and Hokkirigawa, K., Journal of Tribology, ASME, 116, 860 (1994).CrossRefGoogle Scholar
15.Lawn, B.R., Evans, A.G., and Marshall, D.B., J. Am. Ceram. Soc. 63, 574 (1980).CrossRefGoogle Scholar
16.Gruninger, M.F., Lawn, B.R., Farabrugh, E.N., and Wachtman, B.J., J. Am. Ceram. 70, 344 (1987).CrossRefGoogle Scholar
17.Lawn, B.R. and Fuller, E.R., J. Mater. Sci. 19, 4061 (1984).CrossRefGoogle Scholar
18.Zhang, T.Y., Chen, L.Q., and Fu, R., Acta Mater. 47, 3869 (1999).CrossRefGoogle Scholar
19.Chiang, S.S., Marshall, D.B., and Evans, A.G., in Surface and Interfaces in Ceramics & Ceramic-Metal System, edited by Pask, and Evans, A.G. (Plenum Press, New York, 1981), 603.CrossRefGoogle Scholar
20.Mehta, K. and Virkar, A., J. Am. Ceram. Soc. 73, 567 (1990).Google Scholar
21.Uchino, K., Piezoelectric Actuators and Ultrasonic Motors (Kluwer Academic Press, Boston, 1997).Google Scholar
22.Randall, C.A., Kim, N., Kucera, J.P., Cao, W., Shroat, T.R., J. Am. Ceram. Soc. 81, 677 (1998).Google Scholar
23.Yang, W., Mechatronic Reliability (Tsinghua University Press, Springer-Verlag, Beijing, 2001).Google Scholar
24.Kriese, M.D., Boismier, D.A., Moody, N.R., and Gerberich, W.W., Eng. Fract. Mech. 61, 1 (1998).Google Scholar
25.Khachaturyan, A.G., Theory of Structural Transformations in Solids (John-Wiley, New York, 1983).Google Scholar
26.Salje, E., Phase Transitions in Ferroelastic and Coelastic Crystals (Cambridge University Press, New York, 1990).Google Scholar
27.Arlt, G., J. Mater. Sci. 25, 2655 (1990).CrossRefGoogle Scholar
28.Arlt, G., Ferroelectric 104, 207 (1990).CrossRefGoogle Scholar
29.Cao, W. and Randall, C.A., J. Phys. Chem. Solids 57, 1499 (1996).CrossRefGoogle Scholar
30.Bao, D.H., Wu, X.Q., Zhang, L.Y., and Yao, X., J. Inorg. Mater. 14, 119 (1999).Google Scholar
31.Chang, J.F. and Desu, S.B., J. Mater. Res. 9, 955 (1994).Google Scholar