Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-10T23:34:52.643Z Has data issue: false hasContentIssue false

Degradation susceptibility of surgical magnesium alloy in artificial biological fluid containing albumin

Published online by Cambridge University Press:  31 January 2011

Chenglong Liu
Affiliation:
Department of Physics and Materials Science, City University of Hong Kong, Kowloon, Kowloon, Hong Kong, People’s Republic of China
Yunchang Xin
Affiliation:
Department of Physics and Materials Science, City University of Hong Kong, Kowloon, Kowloon, Hong Kong, People’s Republic of China; and Tsinghua University, Shenzhen Graduate School, Shenzhen 518055, China
Xiubo Tian
Affiliation:
Department of Physics and Materials Science, City University of Hong Kong, Kowloon, Kowloon, Hong Kong, People’s Republic of China; and State Key Laboratory of Welding Production Technology, School of Material Science and Engineering, Hargin Institute of Technology, Heilongjiang 150001, China
Paul K. Chu*
Affiliation:
Department of Physics and Materials Science, City University of Hong Kong, Kowloon, Kowloon, Hong Kong, People’s Republic of China
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

The objective of this study is to investigate the corrosion susceptibility of surgical AZ91 magnesium alloys in simulated body fluids (SBFs) consisting of bovine serum albumin (BSA) and acidic SBFs (pH 5) using electrochemical methods. The addition of BSA significantly moves the open-circuit potential toward a more positive value and suppresses the corrosion reaction. The corrosion resistance under the open-circuit conditions in the SBFs with 1 g/L BSA is approximately twice that in the SBFs. A higher BSA concentration decreases the corrosion susceptibility. In addition, the acidic SBF results in a higher alloy dissolution rate. The possible mechanisms are discussed.

Keywords

Type
Articles
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Davis, J.R.: Handbook of Materials for Medical Devices ASM International, Warrendale, OH 2003 16Google Scholar
2Gefen, A.: Computational simulations of stress shielding and bone resorption around existing and computer-designed orthopaedic screws. Med. Biol. Eng. Comput. 40, 311 2002CrossRefGoogle ScholarPubMed
3Steinemann, S.G.: Metal implants and surface reactions. Injury 27(3), S-C16 1996Google Scholar
4Witte, F., Kaese, V., Haferkamp, H., Switzer, E., Wirth, C.J. Windhagen, H.: In vivo corrosion of four magnesium alloys and the associated bone response. Biomaterials 26, 3557 2005CrossRefGoogle ScholarPubMed
5Witte, F., Fischer, J., Nellesen, J., Windhagen, H.: In vitro and in vivocorrosion measurements of magnesium alloys. Biomaterials 27, 1013 2006CrossRefGoogle Scholar
6Li, L.C., Gao, J.C. Wang, Y.: Corrosion behaviors and surface modification of magnesium alloys for biomaterial applications. Mater. Rev. 17(10), 29 2003Google Scholar
7Inoue, H., Sugahara, K., Yamamoto, A. Tsuakino, H.: Corrosion rate of magnesium and its alloys in buffered chloride solutions. Corros. Sci. 44, 603 2002CrossRefGoogle Scholar
8Woodward, S.M. Gershun, A.V.: Engine Coolant Testing American Society for Testing and Materials, Philadelphia 1993 234Google Scholar
9Song, G.L.: Recent progress in corrosion and protection of magnesium alloys. Adv. Eng. Mater. 7, 563 2005CrossRefGoogle Scholar
10Gulbrandsen, E.: Anodic behavior of Mg in HCO3/ CO2−3 buffer solutions: Quasi-steady measurements. Electrochim. Acta 37, 1403 1992CrossRefGoogle Scholar
11Park, J.B.: Biomaterials: An Introduction Plenum Press, New York 1979 187–193Google Scholar
12Cheng, X.L. Roscoe, S.G.: Corrosion behavior of titanium in the presence of calcium phosphate and serum proteins. Biomaterials 26, 7350 2005CrossRefGoogle ScholarPubMed
13Omanovic, S. Roscoe, S.G.: Electrochemical studies of the adsorption behavior of bovine serum albumin on stainless steel. Langmuir 83, 15 1999Google Scholar
14Clark, G.C.F. Williams, D.F.: The effects of proteins of proteins on metallic corrison. J. Biomed. Mater. Res. 16, 125 1982CrossRefGoogle Scholar
15Takemoto, S., Hattori, M., Yoshinari, M., Kawada, E. Oda, Y.: Corrosion behavior and surface characterization of titanium in solution containing fluoride and albumin. Biomaterials 26, 829 2005CrossRefGoogle ScholarPubMed
16Khan, M.A., Williams, R.L. Williams, D.F.: The corrosion behavior of Ti–6Al–4V, Ti–6Al–7Nb and Ti–13Nb–13Zr in protein solutions. Biomaterials 20, 631 1999CrossRefGoogle ScholarPubMed
17Popa, M.V., Demetrescu, I., Vasilesce, E. Ionita, D.: Corrosion susceptibility of implant materials Ti–5Al–4V and Ti–6Al–4Fe in artificial extra-cellular fluids. Electrochim. Acta 49, 2113 2004CrossRefGoogle Scholar
18Song, G.L., Bowles, A.L. StJohn, D.H.: Corrosion resistance of aged die cast magnesium alloy AZ91D. Mater. Sci. Eng., A 366, 74 2004CrossRefGoogle Scholar
19Zhang, Y.J., Yan, C.W., Wang, F.H. Li, W.F.: Electrochemical behavior of anodized Mg alloy AZ91D in chuloride containing aqueous solution. Corros. Sci. 47, 2816 2005CrossRefGoogle Scholar
20Liu, X.Y., Fu, R.K.Y., Poon, R.W.Y., Chen, P., Chu, P.K. Ding, C.X.: Biomimetic growth of apatite on hydrogen-implanted silicon. Biomaterials 25, 5575 2004CrossRefGoogle ScholarPubMed
21Shen, Y.H., Yang, Z.L. Wu, J.G.: FTIR study on the precipitates of bovine serum albumin reacted with calcium hydroxyapatite. Acta Sci. Nat. Univ. Pekinensis 35, 431 1999Google Scholar
22Klinger, A., Steinberg, D., Kohavi, D. Sela, M.N.: Mechanism of adsorption of human albumin to titanium in vitro. J. Biomed. Mater. Res. 36, 387 19973.0.CO;2-B>CrossRefGoogle ScholarPubMed
23Hara, N., Kobayashi, Y., Kagaya, D. Akao, N.: Formation and breakdown of surface films on magnesium and its alloys in aqueous solutions. Corros. Sci. 49, 166 2007CrossRefGoogle Scholar
24Song, G., Atrens, A., Sthohn, D. Li, Y.: The electrochemical corrosion of pure magnesium in 1 N NaCl. Corros. Sci. 39, 855 1997CrossRefGoogle Scholar
25Ballerini, G., Bardi, U., Bignucolo, R. Ceraolo, G.: About some corrosion mechanisms of AZ91D magnesium alloy. Corros. Sci. 47, 2173 2005CrossRefGoogle Scholar
26Zeng, R.C., Zhou, W.Q., Han, E.H. Wei, K.E.: Effect of pH values on as-extruded magnesium alloy AM60. Acta Metall. Sinca. 41, 307 2005Google Scholar
27Li, Y., Song, G.L., Lin, H. Cao, C.N.: Study on the relationship between the corrosion interface structure and negative difference effect for pure magnesium. Corros. Sci. Protect. Technol. 11, 202 1999Google Scholar
28Cao, C.N.: An introduction to electrochemical impedance spectroscopy, Science editor, Beijing 2002 63–67Google Scholar
29Contu, F., Elsener, B. Honhni, H.: Characterization of implant materials in fetal bovine serum and sodium sulfate by electrochemical impedance spectroscopy. I. Mechanically polished samples. J. Biomed. Mater. Res. 62, 412 2002CrossRefGoogle ScholarPubMed
30Song, G.L., Aterens, A., Wu, S.L. Zhang, B.: Corrosion behavior of AZ21, AZ501 and AZ91 in sodium chloride. Corros. Sci. 40, 1769 1998CrossRefGoogle Scholar
31McDonald, R., Pask, J.A. Fuerstenau, D.W.: Surface charge of alumina and magnesia in aqueous media. J. Am. Ceram. Soc. 47, 516 1964Google Scholar
32Krajewski, A., Piancastelli, A. Malavolti, R.: Albumin adhesion on ceramics and correlation with their Z-potential. Biomaterials 19, 637 1998CrossRefGoogle ScholarPubMed
33Brown, S.A. Merritt, K.: Electrochemical corrosion in saline and serum. J. Biomed. Mater. Res. 14, 173 1980CrossRefGoogle ScholarPubMed