Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-23T11:53:50.704Z Has data issue: false hasContentIssue false

Degradation of high-Tc superconductors by annealing in dry and moist atmospheres

Published online by Cambridge University Press:  31 January 2011

W-K. Lee
Affiliation:
Henry Krumb School of Mines, Columbia University, New York, New York 10027
A. S. Nowick
Affiliation:
Henry Krumb School of Mines, Columbia University, New York, New York 10027
Get access

Abstract

A study is made of the effects of annealing both La2−xSrxCuO4 (for x = 0, 0.1, and 0.15) and YBa2Cu3O7 in wet and dry O2 atmospheres at various temperatures between 200 and 930 °C. In the case of La2−xSrxSrCuO4, substantial degradation of resistive properties occurs during annealing in moist O2, the degradation being highest at 200 °C and decreasing as the treatment temperature increases. Since the Meissner effect remains unaffected, it is concluded that degradation is due to the formation of a hydroxide species at grain boundaries, which decomposes as the anneal temperature is increased to 930 °C. In the case of YBa2Cu3O7, on the other hand, moisture does not produce degradation for anneals at 200 °C and above, but severe degradation of resistive behavior does occur for dry O2 anneals, with a maximum effect at 500 °C. It is found that this effect results from a contaminant gas, possibly CO2, absorbed by the furnace when it is open to air. Again, the degradation is due to formation of a grain-boundary phase which decomposes by annealing at 930 °C.

Type
Articles
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Yan, M. F., Barns, R. L., O'Bryan, H. M., Gallagher, P. K., Sherwood, R. C., and Jin, S., Appl. Phys. Lett. 51, 532 (1987).CrossRefGoogle Scholar
2Barns, R. L. and Laudise, R. A., Appl. Phys. Lett. 51, 1373 (1987).CrossRefGoogle Scholar
3Bansal, N. P. and Sandkuhl, A. L., Appl. Phys. Lett. 52, 323 (1988).CrossRefGoogle Scholar
4Qiu, S. L., Ruckman, M. W., Brookes, N. B., Johnson, P. D., Chen, J., Lin, C. L., Strongin, M., Sinkovic, B., Crow, J. E., and Jee, C-S., Phys. Rev. B 37, 3747 (1988).CrossRefGoogle Scholar
5Jin, S-G., Liu, L-G., Zhu, Z-Z., and Huang, Y-L., Solid State Commun. 69, 179 (1989).CrossRefGoogle Scholar
6Ikuma, Y., Yoshimura, M., and Kabe, S., J. Mater. Res. 5, 17 (1990).CrossRefGoogle Scholar
7Gallagher, P. K., Grader, G. S., and O'Bryan, H. M., Mater. Res. Bull. 23, 1491 (1988).CrossRefGoogle Scholar
8Fueki, K., Kitazawa, K., Kishio, K., and Hasegawa, T., in Low Temperature Electronics and High Temperature Superconductor (Proc. of the Electrochemical Society, 1988), Vol. 88–89, p. 286.Google Scholar
9Kitazawa, K., Kishio, K., Hasegawa, T., Ohtomo, A., Yaegashi, S., Kanbe, S., Park, K., Kuwahara, K., and Fueki, K., in High-Temperature Superconductors, edited by Brodsky, M. B., Dynes, R. C., Kitazawa, K., and Tuller, H. L. (Mater. Res. Soc. Symp. Proc. 99, Pittsburgh, PA, 1988), p. 33.Google Scholar
10Sonder, E., Boatner, L. A., Chakoumakos, B. C., and Sales, B. C., Mater. Lett. 8, 171 (1989).CrossRefGoogle Scholar
11Kurtz, R. L., Stockbauer, R., Madey, T. E., Mueller, D., Shih, A., and Toth, L., Phys. Rev. B 37, 7936 (1988).CrossRefGoogle Scholar
12Kishio, K., Sugii, N., Kitazawa, K., and Fueki, K., Jpn. J. Appl. Phys. 26, L466 (1987).CrossRefGoogle Scholar
13Grant, P. M., Parkin, S. S. P., Lee, V. Y., Engler, E. M., Ramirez, M. L., Vazquez, J. E., Lim, G., Jacowitz, R. D., and Greene, R. L., Phys. Rev. Lett. 58, 2482 (1987).CrossRefGoogle Scholar
14Tholence, J. L., Physica 148B, 353 (1987).Google Scholar
15Hutiray, Gy., Jánossy, A., Kriza, G., L. Mihály, Pekker, S., Ségransan, P., Szökefalvi-Nagy, Z., and Zsoldos, E., Solid State Commun. 63, 907 (1987).CrossRefGoogle Scholar
16Cooper, J. R., Zhou, L. W., Dunn, B., Chu, C. T., Alavi, B., and Griiner, G., Solid State Commun. 64, 253 (1987).Google Scholar
17Beille, J., Chevalier, B., Demazeau, G., Deslandes, F., Etourneau, J., Laborde, O., Michel, C., Lejay, P., Provost, J., Raveau, B., Sulpice, A., Tholence, J. L., and Tournier, R., Physica 146B, 307 (1987).Google Scholar
18Johnston, D. C., Sinha, S. K., Jacobson, A. J., and Newsam, J. M., Physica C153155, 572 (1988).Google Scholar
19Shaheen, S. A., Jisrawi, N., Lee, Y. H., Zhang, Y. Z., Croft, M., McLean, W. L., Zhen, H., Rebelsky, L., and Horn, S., Phys. Rev. B 36, 7214 (1987).CrossRefGoogle Scholar
20Aronson, M. C., Cheong, S-W., Garzon, F. H., Thompson, J. D., and Fisk, Z., Phys. Rev. B 39, 11445 (1989).CrossRefGoogle Scholar
21Rose, A. C.-Innes and Rhoderick, E. H., Introduction to Superconductivity (Pergamon Press Ltd., 1969), Chap. 10.Google Scholar