Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-23T11:45:49.745Z Has data issue: false hasContentIssue false

Deformation of an extruded nickel beryllide between room temperature and 820 °C

Published online by Cambridge University Press:  31 January 2011

G.M. Pharr
Affiliation:
Department of Materials Science, Rice University, P.O. Box 1892, Houston, Texas 77251
S.V. Courington
Affiliation:
Department of Materials Science, Rice University, P.O. Box 1892, Houston, Texas 77251
J. Wadsworth
Affiliation:
Lockheed Missiles & Space Company, Inc., O/9310, B/204, 3251 Hanover Street, Palo Alto, California 94304
T.G. Nieh
Affiliation:
Lockheed Missiles & Space Company, Inc., O/9310, B/204, 3251 Hanover Street, Palo Alto, California 94304
Get access

Abstract

The mechanical properties of nickel beryllide, NiBe, have been investigated in the temperature range 20–820 °C. The room temperature properties were studied using tension, bending, and compression tests, while the elevated temperature properties were characterized in compression only. NiBe exhibits some ductility at room temperature; the strains to failure in tension and compression are 1.3% and 13%, respectively. Fracture is controlled primarily by the cohesive strength of grain boundaries. At high temperatures, NiBe is readily deformable—strains in excess of 30% can be achieved at temperatures as low as 400 °C. Strain hardening rates are high, and the flow stress decreases monotonically with temperature. The high temperature strength of NiBe is as good or better than that of NiAl, but not quite as good as CoAl.

Type
Articles
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Marder, J. M. and Stonehouse, A. J., in Proc. 2nd Int. SAMPE Metals and Metals Processing Conference, edited by Froes, F. H. and Cull, R. A. (SAMPE, Corvina, CA, 1988), Vol. 2, p. 357.Google Scholar
2.Fleischer, R. L. and Zabala, R. J., Metall. Trans. 20A, 1279 (1989).CrossRefGoogle Scholar
3.Lee, J. S. and Nieh, T. G., in Oxidation of Intermetallic Compounds, edited by Golbstein, T. and Doychak, J. (The Minerals, Metals & Materials Society, Warrendale, PA, 1988), p. 271.Google Scholar
4.Stonehouse, A. J., Paine, R. M., and Beaver, W. W., in Mechanical Properties of Intermetallic Compounds, edited by Westbrook, J. H. (John Wiley and Sons, Inc., New York, 1960), p. 297.Google Scholar
5.Lewis, J. R., An Evaluation of Beryllides, GE Research Lab. Report No. 61-GC-157, February (1961).Google Scholar
6.Lewis, J. R., Further Evaluation of Beryllides, GE Research Lab. Report No. 61-GC-169, April (1961).Google Scholar
7.Kirby, R. F., University of Arizona, Ph.D. Dissertation (1969).Google Scholar
8.Liu, C. T., White, C. L., Koch, C. C., and Lee, E. H., in High Temperature Materials Chemistry II, edited by Cubicciotti, Munir (The Electrochem. Soc. Inc., 1983), Vol. 83–7, p. 32.Google Scholar
9.Aoki, K. and Izumi, O., Nippon Kinzoku Gakkaishi 43, 1190 (1979).Google Scholar
10.Phase Diagrams of Binary Beryllium Alloys, edited by Okamoto, H. and Tanner, L. E. (ASM INTERNATIONAL, Metals Park, OH, 1987), p. 134.Google Scholar
11.Nieh, T. G., Wadsworth, J., and Liu, C. T., Scripta Metall. 22, 1409 (1988).CrossRefGoogle Scholar
12.Nieh, T. G., Wadsworth, J., and Liu, C. T., J. Mater. Res. 4, 1347 (1989).CrossRefGoogle Scholar
13.Grala, E. M., in Mechanical Properties of Intermetallic Compounds, edited by Westbrook, J. H. (John Wiley & Sons, Inc., New York, 1960), p. 358.Google Scholar
14.Westbrook, J. H., J. Electrochem. Soc. 103, 54 (1956).CrossRefGoogle Scholar
15.Ball, A. and Smallman, R. E., Acta Metall. 14, 1349 (1966).CrossRefGoogle Scholar
16.Pope, D. P. and Ezz, S. S., Int. Metals Rev. 29 (3), 136 (1984).Google Scholar
17.Whittenberger, J. D., Mater. Sci. Eng. 73, 87 (1985).CrossRefGoogle Scholar
18.Hahn, K. H. and Vedula, K., Scripta Metall. 23, 7 (1989).CrossRefGoogle Scholar
19.Darolia, R., JOM (formerly J. Metals) 43, 44 (1991).Google Scholar
20.Vedula, K. and Stephens, J. R., in High-Temperature Ordered Intermetallic Alloys II, edited by Stoloff, N. S., Koch, C. C., Liu, C. T., and Izumi, O. (Mater. Res. Soc. Symp. Proc. 81, Pittsburgh, PA, 1987), p. 381.Google Scholar
21.Kear, B. H. and Wilsdorf, H. G. F., Trans. TMS-AIME 224, 382 (1962).Google Scholar
22.Whittenberger, J. D., J. Mater. Sci. 22, 394 (1987).CrossRefGoogle Scholar
23.Yaney, D. L. and Nix, W. D., J. Mater. Sci. 23, 3088 (1988).CrossRefGoogle Scholar
24.Nix, W. D. and Ilschner, B., in Strength of Metals and Alloys (ICSMA 5), edited by Haasen, P., Gerold, V., and Kostorz, G. (Pergamon Press, Oxford, U.K., 1980), p. 1503.Google Scholar
25.Feng, C. R. and Sadananda, K., Scripta Metall. Mater. 24, 2107 (1990).CrossRefGoogle Scholar
26.Crimp, M. A. and Vedula, K., Philos. Mag. 63A, 559 (1991).CrossRefGoogle Scholar
27.Kerr, W. R., Metall. Trans. 17A, 2298 (1986).CrossRefGoogle Scholar
28.Liu, C. T., Oak Ridge National Laboratory, private communication (1991).Google Scholar
29.Nieh, T. G., Wadsworth, J., and Liu, C. T., in High Temperature Aluminides & Intermetallics, edited by Whang, S. H., Liu, C. T., Pope, D. P., and Stiegler, J. O. (The Minerals, Metals & Materials Society, Warrendale, PA, 1990), p. 453.Google Scholar
30.Manor, E. and Elieizer, D., Scripta Metall. Maters. 24, 129 (1990).CrossRefGoogle Scholar